Determining the biomarkers and pathogenesis of myocardial infarction combined with ankylosing spondylitis via a systems biology approach

Chunying Liu, Chengfei Peng, Xiaodong Jia, Chenghui Yan, Dan Liu, Xiaolin Zhang, Haixu Song, Yaling Han

Front. Med. ›› 2025, Vol. 19 ›› Issue (3) : 507-522.

PDF(10491 KB)
PDF(10491 KB)
Front. Med. ›› 2025, Vol. 19 ›› Issue (3) : 507-522. DOI: 10.1007/s11684-025-1132-8
RESEARCH ARTICLE

Determining the biomarkers and pathogenesis of myocardial infarction combined with ankylosing spondylitis via a systems biology approach

Author information +
History +

Abstract

Ankylosing spondylitis (AS) is linked to an increased prevalence of myocardial infarction (MI). However, research dedicated to elucidating the pathogenesis of AS-MI is lacking. In this study, we explored the biomarkers for enhancing the diagnostic and therapeutic efficiency of AS-MI. Datasets were obtained from the Gene Expression Omnibus database. We employed weighted gene co-expression network analysis and machine learning models to screen hub genes. A receiver operating characteristic curve and a nomogram were designed to assess diagnostic accuracy. Gene set enrichment analysis was conducted to reveal the potential function of hub genes. Immune infiltration analysis indicated the correlation between hub genes and the immune landscape. Subsequently, we performed single-cell analysis to identify the expression and subcellular localization of hub genes. We further constructed a transcription factor (TF)-microRNA (miRNA) regulatory network. Finally, drug prediction and molecular docking were performed. S100A12 and MCEMP1 were identified as hub genes, which were correlated with immune-related biological processes. They exhibited high diagnostic value and were predominantly expressed in myeloid cells. Furthermore, 24 TFs and 9 miRNA were associated with these hub genes. Enzastaurin, meglitinide, and nifedipine were predicted as potential therapeutic agents. Our study indicates that S100A12 and MCEMP1 exhibit significant potential as biomarkers and therapeutic targets for AS-MI, offering novel insights into the underlying etiology of this condition.

Keywords

myocardial infarction / ankylosing spondylitis / inflammation / bioinformatics analysis

Cite this article

Download citation ▾
Chunying Liu, Chengfei Peng, Xiaodong Jia, Chenghui Yan, Dan Liu, Xiaolin Zhang, Haixu Song, Yaling Han. Determining the biomarkers and pathogenesis of myocardial infarction combined with ankylosing spondylitis via a systems biology approach. Front. Med., 2025, 19(3): 507‒522 https://doi.org/10.1007/s11684-025-1132-8

References

[1]
Cai S, Zhao M, Zhou B, Yoshii A, Bugg D, Villet O, Sahu A, Olson GS, Davis J, Tian R. Mitochondrial dysfunction in macrophages promotes inflammation and suppresses repair after myocardial infarction. J Clin Invest 2023; 133(4): e159498
CrossRef Google scholar
[2]
Salari N, Morddarvanjoghi F, Abdolmaleki A, Rasoulpoor S, Khaleghi AA, Hezarkhani LA, Shohaimi S, Mohammadi M. The global prevalence of myocardial infarction: a systematic review and meta-analysis. BMC Cardiovasc Disord 2023; 23(1): 206
CrossRef Google scholar
[3]
Hu D, Li R, Li Y, Wang M, Wang L, Wang S, Cheng H, Zhang Q, Fu C, Qian Z, Wei Q. Inflammation-targeted nanomedicines alleviate oxidative stress and reprogram macrophages polarization for myocardial infarction treatment. Adv Sci (Weinh) 2024; 11(21): e2308910
CrossRef Google scholar
[4]
Pluijmert NJ, de Jong RCM, de Vries MR, Pettersson K, Atsma DE, Jukema JW, Quax PHA. Phosphorylcholine antibodies restrict infarct size and left ventricular remodelling by attenuating the unreperfused post-ischaemic inflammatory response. J Cell Mol Med 2021; 25(16): 7772–7782
CrossRef Google scholar
[5]
Ranganathan V, Gracey E, Brown MA, Inman RD, Haroon N. Pathogenesis of ankylosing spondylitis—recent advances and future directions. Nat Rev Rheumatol 2017; 13(6): 359–367
CrossRef Google scholar
[6]
van der Linden S, van der Heijde D. Clinical aspects, outcome assessment, and management of ankylosing spondylitis and postenteric reactive arthritis. Curr Opin Rheumatol 2000; 12(4): 263–268
CrossRef Google scholar
[7]
Hwang MC, Ridley L, Reveille JD. Ankylosing spondylitis risk factors: a systematic literature review. Clin Rheumatol 2021; 40(8): 3079–3093
CrossRef Google scholar
[8]
Peters MJ, Visman I, Nielen MM, Van Dillen N, Verheij RA, van der Horst-Bruinsma IE, Dijkmans BA, Nurmohamed MT. Ankylosing spondylitis: a risk factor for myocardial infarction. Ann Rheum Dis 2010; 69(3): 579–581
CrossRef Google scholar
[9]
Mavrogeni S, Servos G, Smerla R, Markousis-Mavrogenis G, Grigoriadou G, Kolovou G, Papadopoulos G. Cardiovascular involvement in pediatric systemic autoimmune diseases: the emerging role of noninvasive cardiovascular imaging. Inflamm Allergy Drug Targets 2015; 13(6): 371–381
CrossRef Google scholar
[10]
Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol 2018; 36(5): 411–420
CrossRef Google scholar
[11]
Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 2010; 31(2): 455–461
CrossRef Google scholar
[12]
Kim RB, Kim JR, Hwang JY. Epidemiology of myocardial infarction in Korea: hospitalization incidence, prevalence, and mortality. Epidemiol Health 2022; 44: e2022057
CrossRef Google scholar
[13]
Su Z, Zou Z, Hay SI, Liu Y, Li S, Chen H, Naghavi M, Zimmerman MS, Martin GR, Wilner LB, Sable CA, Murray CJL, Kassebaum NJ, Patton GC, Zhang H. Global, regional, and national time trends in mortality for congenital heart disease, 1990–2019: an age-period-cohort analysis for the Global Burden of Disease 2019 study. EClinicalMedicine 2022; 43: 101249
CrossRef Google scholar
[14]
Xiao ZX, Miller JS, Zheng SG. An updated advance of autoantibodies in autoimmune diseases. Autoimmun Rev 2021; 20(2): 102743
CrossRef Google scholar
[15]
Sitia S, Atzeni F, Sarzi-Puttini P, Di Bello V, Tomasoni L, Delfino L, Antonini-Canterin F, Di Salvo G, De Gennaro Colonna V, La Carrubba S, Carerj S, Turiel M. Cardiovascular involvement in systemic autoimmune diseases. Autoimmun Rev 2009; 8(4): 281–286
CrossRef Google scholar
[16]
Papagoras C, Voulgari PV, Drosos AA. Cardiovascular disease in spondyloarthritides. Curr Vasc Pharmacol 2020; 18(5): 473–487
CrossRef Google scholar
[17]
Park CJ, Choi YJ, Kim JG, Han IB, Do Han K, Choi JM, Sohn S. Association of acute myocardial infarction with ankylosing spondylitis: a nationwide longitudinal cohort study. J Clin Neurosci 2018; 56: 34–37
CrossRef Google scholar
[18]
Blanco LP, Wang X, Carlucci PM, Torres-Ruiz JJ, Romo-Tena J, Sun HW, Hafner M, Kaplan MJ. RNA externalized by neutrophil extracellular traps promotes inflammatory pathways in endothelial cells. Arthritis Rheumatol 2021; 73(12): 2282–2292
CrossRef Google scholar
[19]
Rengarajan A, Goldblatt HE, Beebe DJ, Virumbrales-Muñoz M, Boeldt DS. Immune cells and inflammatory mediators cause endothelial dysfunction in a vascular microphysiological system. Lab Chip 2024; 24(6): 1808–1820
CrossRef Google scholar
[20]
Zhu M, Goetsch SC, Wang Z, Luo R, Hill JA, Schneider J, Morris SM Jr, Liu ZP. FoxO4 promotes early inflammatory response upon myocardial infarction via endothelial Arg1. Circ Res 2015; 117(11): 967–977
CrossRef Google scholar
[21]
Ambler WG, Kaplan MJ. Vascular damage in systemic lupus erythematosus. Nat Rev Nephrol 2024; 20(4): 251–265
CrossRef Google scholar
[22]
Tong R, Jia T, Shi R, Yan F. Inhibition of microRNA-15 protects H9c2 cells against CVB3-induced myocardial injury by targeting NLRX1 to regulate the NLRP3 inflammasome. Cell Mol Biol Lett 2020; 25(1): 6
CrossRef Google scholar
[23]
Prabhu SD, Frangogiannis NG. The biological basis for cardiac repair after myocardial infarction: from inflammation to fibrosis. Circ Res 2016; 119(1): 91–112
CrossRef Google scholar
[24]
Broch K, Anstensrud AK, Woxholt S, Sharma K, Tøllefsen IM, Bendz B, Aakhus S, Ueland T, Amundsen BH, Damås JK, Berg ES, Bjørkelund E, Bendz C, Hopp E, Kleveland O, Stensæth KH, Opdahl A, Kløw NE, Seljeflot I, Andersen G, Wiseth R, Aukrust P, Gullestad L. Randomized trial of interleukin-6 receptor inhibition in patients with acute ST-segment elevation myocardial infarction. J Am Coll Cardiol 2021; 77(15): 1845–1855
CrossRef Google scholar
[25]
Chen R, Zhao H, Yan H. Long-term management of patients with myocardial infarction: an updated review. Cardiol Discov 2022; 2(4): 241–262
CrossRef Google scholar
[26]
Wang L, Wang Y, Jiang Y, Chen M, Li Z, Wang K, Luo C, Ning N, Zeng J, Zhou Z, Song Y, Yang F, Huang SS, Lin Y. Tetrahedral framework nuclear acids can regulate interleukin-17 pathway to alleviate inflammation and inhibit heterotopic ossification in ankylosing spondylitis. ACS Nano 2023; 17(23): 24187–24199
CrossRef Google scholar
[27]
Li Y, He Y, Chen S, Wang Q, Yang Y, Shen D, Ma J, Wen Z, Ning S, Chen H. S100A12 as biomarker of disease severity and prognosis in patients with idiopathic pulmonary fibrosis. Front Immunol 2022; 13: 810338
CrossRef Google scholar
[28]
Gonzalez LL, Garrie K, Turner MD. Role of S100 proteins in health and disease. Biochim Biophys Acta Mol Cell Res 2020; 1867(6): 118677
CrossRef Google scholar
[29]
Foell D, Kane D, Bresnihan B, Vogl T, Nacken W, Sorg C, Fitzgerald O, Roth J. Expression of the pro-inflammatory protein S100A12 (EN-RAGE) in rheumatoid and psoriatic arthritis. Br J Rheumatol 2003; 42(11): 1383–1389
CrossRef Google scholar
[30]
Zhang X, Cheng M, Gao N, Li Y, Yan C, Tian X, Liu D, Qiu M, Wang X, Luan B, Deng J, Wang S, Tian H, Wang G, Ma X, Stone GW, Han Y. Utility of S100A12 as an early biomarker in patients with ST-segment elevation myocardial infarction. Front Cardiovasc Med 2021; 8: 747511
CrossRef Google scholar
[31]
Li K, Wang SW, Li Y, Martin RE, Li L, Lu M, Lamhamedi-Cherradi SE, Hu G, Demissie-Sanders S, Zheng J, Chung F, Oates T, Yao Z. Identification and expression of a new type II transmembrane protein in human mast cells. Genomics 2005; 86(1): 68–75
CrossRef Google scholar
[32]
Raman K, O’Donnell MJ, Czlonkowska A, Duarte YC, Lopez-Jaramillo P, Peñaherrera E, Sharma M, Shoamanesh A, Skowronska M, Yusuf S, Paré G. Peripheral blood MCEMP1 gene expression as a biomarker for stroke prognosis. Stroke 2016; 47(3): 652–658
CrossRef Google scholar
[33]
Decock J, Hendrickx W, Thirkettle S, Gutiérrez-Fernández A, Robinson SD, Edwards DR. Pleiotropic functions of the tumor- and metastasis-suppressing matrix metalloproteinase-8 in mammary cancer in MMTV-PyMT transgenic mice. Breast Cancer Res 2015; 17(1): 38
CrossRef Google scholar
[34]
Oeckinghaus A, Ghosh S. The NF-κB family of transcription factors and its regulation. Cold Spring Harb Perspect Biol 2009; 1(4): a000034
CrossRef Google scholar
[35]
Ma Y, Yabluchanskiy A, Lindsey ML. Neutrophil roles in left ventricular remodeling following myocardial infarction. Fibrogenesis Tissue Repair 2013; 6(1): 11
CrossRef Google scholar
[36]
Ge L, Zhou X, Ji WJ, Lu RY, Zhang Y, Zhang YD, Ma YQ, Zhao JH, Li YM. Neutrophil extracellular traps in ischemia-reperfusion injury-induced myocardial no-reflow: therapeutic potential of DNase-based reperfusion strategy. Am J Physiol Heart Circ Physiol 2015; 308(5): H500–H509
CrossRef Google scholar
[37]
Rosenzweig HL, Vance EE, Asare-Konadu K, Koney KV, Lee EJ, Deodhar AA, Sen R, Caplan L, Napier RJ. Card9/neutrophil signalling axis promotes IL-17A-mediated ankylosing spondylitis. Ann Rheum Dis 2024; 83(2): 214–222
CrossRef Google scholar
[38]
Peet C, Ivetic A, Bromage DI, Shah AM. Cardiac monocytes and macrophages after myocardial infarction. Cardiovasc Res 2020; 116(6): 1101–1112
CrossRef Google scholar
[39]
Pietzsch J, Hoppmann S. Human S100A12: a novel key player in inflammation. Amino Acids 2009; 36(3): 381–389
CrossRef Google scholar
[40]
Chen JX, Xu X, Zhang S. Silence of long noncoding RNA NEAT1 exerts suppressive effects on immunity during sepsis by promoting microRNA-125-dependent MCEMP1 downregulation. IUBMB Life 2019; 71(7): 956–968
CrossRef Google scholar
[41]
Xia P, Ji X, Yan L, Lian S, Chen Z, Luo Y. Roles of S100A8, S100A9 and S100A12 in infection, inflammation and immunity. Immunology 2024; 171(3): 365–376
CrossRef Google scholar
[42]
Oesterle A, Bowman MA. S100A12 and the S100/Calgranulins: emerging biomarkers for atherosclerosis and possibly therapeutic targets. Arterioscler Thromb Vasc Biol 2015; 35(12): 2496–2507
CrossRef Google scholar
[43]
Pakkir Maideen NM, Manavalan G, Balasubramanian K. Drug interactions of meglitinide antidiabetics involving CYP enzymes and OATP1B1 transporter. Ther Adv Endocrinol Metab 2018; 9(8): 259–268
CrossRef Google scholar
[44]
Roberts R, Jaffe AS, Henry PD, Sobel BE. Nifedipine and acute myocardial infarction. Herz 1981; 6(2): 90–97
[45]
Polisety A, Misra G, Rajawat J, Katiyar A, Singh H, Bhatt AN. Therapeutic natural compounds Enzastaurin and Palbociclib inhibit MASTL kinase activity preventing breast cancer cell proliferation. Med Oncol 2022; 39(5): 100
CrossRef Google scholar
[46]
Shimokawa T, Seike M, Soeno C, Uesaka H, Miyanaga A, Mizutani H, Kitamura K, Minegishi Y, Noro R, Okano T, Yoshimura A, Gemma A. Enzastaurin has anti-tumour effects in lung cancers with overexpressed JAK pathway molecules. Br J Cancer 2012; 106(5): 867–875
CrossRef Google scholar

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 82270300 and 82270493) and the Liaoning Science and Technology Project (Nos. 2024JH2/102500031, 2022JH2/101300012, and 2023-MSLH-344).

Compliance with ethics guidelines

Conflicts of interest Chunying Liu, Chengfei Peng, Xiaodong Jia, Chenghui Yan, Dan Liu, Xiaolin Zhang, Haixu Song, and Yaling Han declare that they have no conflicts of interest.
This is a bioinformatics article and does not involve a research protocol that requires approval by the relevant institutional review board or ethics committee.

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://doi.org/10.1007/s11684-025-1132-8 and is accessible for authorized users.

RIGHTS & PERMISSIONS

2025 Higher Education Press
AI Summary AI Mindmap
PDF(10491 KB)

Accesses

Citations

Detail

Sections
Recommended

/