
Progress of research on the gut microbiome and its metabolite short-chain fatty acids in postmenopausal osteoporosis: a literature review
Yao Chen, Ying Xie, Xijie Yu
Front. Med. ›› 2025, Vol. 19 ›› Issue (3) : 474-492.
Progress of research on the gut microbiome and its metabolite short-chain fatty acids in postmenopausal osteoporosis: a literature review
Postmenopausal osteoporosis (PMOP) is a systemic metabolic bone disease caused by the decrease in estrogen levels after menopause. It leads to bone loss, microstructural damage, and an increased risk of fractures. Studies have found that the gut microbiota and its metabolites can regulate bone metabolism through the gut–bone axis and the gut–brain axis. As research progresses, PMOP has been found to be associated with gut microbiota dysbiosis and Th17/Treg imbalance. The gut microbiota is closely related to the development and differentiation of Treg and Th17 cells. Among them, the metabolites of the gut microbiota such as short-chain fatty acids (SCFAs) can regulate the differentiation of effector T cells by acting on molecular receptors on immune cells, thereby regulating the bone immune process. The multifaceted relationship among the gut microbiota, SCFAs, Th17/Treg cell-mediated bone immunity, and bone metabolism is eliciting attention from researchers. Through a review of existing literature, we have comprehensively summarized the effects of the gut microbiota and SCFAs on PMOP, especially from the perspective of Th17/Treg balance. Regulating this balance may provide new opportunities for PMOP treatment.
postmenopausal osteoporosis / gut microbiota / short-chain fatty acids / Th17 cells / Treg cells
[1] |
NIH consensus development panel on osteoporosis prevention. Osteoporosis prevention, diagnosis, and therapy. JAMA 2001; 285(6): 785–795
CrossRef
Google scholar
|
[2] |
Ensrud KE, Crandall CJ. Osteoporosis. Ann Intern Med 2017; 167(3): ITC17–ITC32
CrossRef
Google scholar
|
[3] |
Foger-Samwald U, Dovjak P, Azizi-Semrad U, Kerschan-Schindl K, Pietschmann P. Osteoporosis: pathophysiology and therapeutic options. EXCLI J 2020; 19: 1017–1037
CrossRef
Google scholar
|
[4] |
Clarke BL. Economic costs of severe osteoporotic fractures continue to increase at expense of refracture. J Bone Miner Res 2022; 37(10): 1809–1810
CrossRef
Google scholar
|
[5] |
Johnell O, Kanis J. Epidemiology of osteoporotic fractures. Osteoporos Int 2005; 16(Suppl 2): S3–S7
CrossRef
Google scholar
|
[6] |
Black DM, Rosen CJ. Postmenopausal osteoporosis. N Engl J Med 2016; 374(3): 254–262
CrossRef
Google scholar
|
[7] |
Watts NB, Bilezikian JP, Camacho PM, Greenspan SL, Harris ST, Hodgson SF, Kleerekoper M, Luckey MM, McClung MR, Pollack RP, Petak SM; AACE Osteoporosis Task Force. American association of clinical endocrinologists medical guidelines for clinical practice for the diagnosis and treatment of postmenopausal osteoporosis. Endocr Pract 2010; 16(Suppl 3): 1–37
CrossRef
Google scholar
|
[8] |
Gedmintas L, Solomon DH, Kim SC. Bisphosphonates and risk of subtrochanteric, femoral shaft, and atypical femur fracture: a systematic review and meta-analysis. J Bone Miner Res 2013; 28(8): 1729–1737
CrossRef
Google scholar
|
[9] |
Cai J, Sun L, Gonzalez FJ. Gut microbiota-derived bile acids in intestinal immunity, inflammation, and tumorigenesis. Cell Host Microbe 2022; 30(3): 289–300
CrossRef
Google scholar
|
[10] |
Gregson CL, Armstrong DJ, Bowden J, Cooper C, Edwards J, Gittoes NJL, Harvey N, Kanis J, Leyland S, Low R, McCloskey E, Moss K, Parker J, Paskins Z, Poole K, Reid DM, Stone M, Thomson J, Vine N, Compston J. UK clinical guideline for the prevention and treatment of osteoporosis. Arch Osteoporos 2022; 17(1): 58
CrossRef
Google scholar
|
[11] |
van der Burgh AC, de Keyser CE, Zillikens MC, Stricker BH. The effects of osteoporotic and non-osteoporotic medications on fracture risk and bone mineral density. Drugs 2021; 81(16): 1831–1858
CrossRef
Google scholar
|
[12] |
Seely KD, Kotelko CA, Douglas H, Bealer B, Brooks AE. The human gut microbiota: a key mediator of osteoporosis and osteogenesis. Int J Mol Sci 2021; 22(17): 9452
CrossRef
Google scholar
|
[13] |
Xu Q, Li D, Chen J, Yang J, Yan J, Xia Y, Zhang F, Wang X, Cao H. Crosstalk between the gut microbiota and postmenopausal osteoporosis: mechanisms and applications. Int Immunopharmacol 2022; 110: 108998
CrossRef
Google scholar
|
[14] |
Li L, Rao S, Cheng Y, Zhuo X, Deng C, Xu N, Zhang H, Yang L. Microbial osteoporosis: the interplay between the gut microbiota and bones via host metabolism and immunity. MicrobiologyOpen 2019; 8(8): e00810
CrossRef
Google scholar
|
[15] |
Wen K, Tao L, Tao Z, Meng Y, Zhou S, Chen J, Yang K, Da W, Zhu Y. Fecal and serum metabolomic signatures and microbial community profiling of postmenopausal osteoporosis mice model. Front Cell Infect Microbiol 2020; 10: 535310
CrossRef
Google scholar
|
[16] |
He J, Xu S, Zhang B, Xiao C, Chen Z, Si F, Fu J, Lin X, Zheng G, Yu G, Chen J. Gut microbiota and metabolite alterations associated with reduced bone mineral density or bone metabolic indexes in postmenopausal osteoporosis. Aging (Albany NY) 2020; 12(9): 8583–8604
CrossRef
Google scholar
|
[17] |
Rizzoli R. Nutritional influence on bone: role of gut microbiota. Aging Clin Exp Res 2019; 31(6): 743–751
CrossRef
Google scholar
|
[18] |
Zhang YW, Li YJ, Lu PP, Dai GC, Chen XX, Rui YF. The modulatory effect and implication of gut microbiota on osteoporosis: from the perspective of “brain-gut-bone” axis. Food Funct 2021; 12(13): 5703–5718
CrossRef
Google scholar
|
[19] |
Lu L, Chen X, Liu Y, Yu X. Gut microbiota and bone metabolism. FASEB J 2021; 35(7): e21740
CrossRef
Google scholar
|
[20] |
Lyu Z, Hu Y, Guo Y, Liu D. Modulation of bone remodeling by the gut microbiota: a new therapy for osteoporosis. Bone Res 2023; 11(1): 31
CrossRef
Google scholar
|
[21] |
Novince CM, Whittow CR, Aartun JD, Hathaway JD, Poulides N, Chavez MB, Steinkamp HM, Kirkwood KA, Huang E, Westwater C, Kirkwood KL. Commensal gut microbiota immunomodulatory actions in bone marrow and liver have catabolic effects on skeletal homeostasis in health. Sci Rep 2017; 7(1): 5747
CrossRef
Google scholar
|
[22] |
Uchida Y, Irie K, Fukuhara D, Kataoka K, Hattori T, Ono M, Ekuni D, Kubota S, Morita M. Commensal microbiota enhance both osteoclast and osteoblast activities. Molecules 2018; 23(7): 1517
CrossRef
Google scholar
|
[23] |
Zhang YW, Cao MM, Li YJ, Zhang RL, Wu MT, Yu Q, Rui YF. Fecal microbiota transplantation as a promising treatment option for osteoporosis. J Bone Miner Metab 2022; 40(6): 874–889
CrossRef
Google scholar
|
[24] |
Wang J, Wang Y, Gao W, Wang B, Zhao H, Zeng Y, Ji Y, Hao D. Diversity analysis of gut microbiota in osteoporosis and osteopenia patients. PeerJ 2017; 5: e3450
CrossRef
Google scholar
|
[25] |
Ma Z, Liu Y, Shen W, Yang J, Wang T, Li Y, Ma J, Zhang X, Wang H. Osteoporosis in postmenopausal women is associated with disturbances in gut microbiota and migration of peripheral immune cells. BMC Musculoskelet Disord 2024; 25(1): 791
CrossRef
Google scholar
|
[26] |
Yan L, Wang X, Yu T, Qi Z, Li H, Nan H, Wang K, Luo D, Hua F, Wang W. Characteristics of the gut microbiota and serum metabolites in postmenopausal women with reduced bone mineral density. Front Cell Infect Microbiol 2024; 14: 1367325
CrossRef
Google scholar
|
[27] |
Wang Z, Chen K, Wu C, Chen J, Pan H, Liu Y, Wu P, Yuan J, Huang F, Lang J, Du J, Xu J, Jin K, Chen L. An emerging role of prevotella histicola on estrogen deficiency-induced bone loss through the gut microbiota-bone axis in postmenopausal women and in ovariectomized mice. Am J Clin Nutr 2021; 114(4): 1304–1313
CrossRef
Google scholar
|
[28] |
Yang X, Chang T, Yuan Q, Wei W, Wang P, Song X, Yuan H. Changes in the composition of gut and vaginal microbiota in patients with postmenopausal osteoporosis. Front Immunol 2022; 13: 930244
CrossRef
Google scholar
|
[29] |
Chen T, Meng F, Wang N, Hao Y, Fu L. The characteristics of gut microbiota and its relation with diet in postmenopausal osteoporosis. Calcif Tissue Int 2024; 115(4): 393–404
CrossRef
Google scholar
|
[30] |
Ozaki D, Kubota R, Maeno T, Abdelhakim M, Hitosugi N. Association between gut microbiota, bone metabolism, and fracture risk in postmenopausal Japanese women. Osteoporos Int 2021; 32(1): 145–156
CrossRef
Google scholar
|
[31] |
Arpaia N, Campbell C, Fan X, Dikiy S, van der Veeken J, deRoos P, Liu H, Cross JR, Pfeffer K, Coffer PJ, Rudensky AY. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 2013; 504(7480): 451–455
CrossRef
Google scholar
|
[32] |
Huang D, Wang J, Zeng Y, Li Q, Wang Y. Identifying microbial signatures for patients with postmenopausal osteoporosis using gut microbiota analyses and feature selection approaches. Front Microbiol 2023; 14: 1113174
CrossRef
Google scholar
|
[33] |
Yang DH, Yang MY. The role of macrophage in the pathogenesis of osteoporosis. Int J Mol Sci 2019; 20(9): 2093
CrossRef
Google scholar
|
[34] |
Gilman J, Cashman KD. The effect of probiotic bacteria on transepithelial calcium transport and calcium uptake in human intestinal-like Caco-2 cells. Curr Issues Intest Microbiol 2006; 7: 1–5
|
[35] |
Wu S, Yang W, De Luca F. Insulin-like growth factor-independent effects of growth hormone on growth plate chondrogenesis and longitudinal bone growth. Endocrinology 2015; 156(7): 2541–2551
CrossRef
Google scholar
|
[36] |
Ding K, Hua F, Ding W. Gut microbiome and osteoporosis. Aging Dis 2020; 11(2): 438–447
CrossRef
Google scholar
|
[37] |
Xu X, Jia X, Mo L, Liu C, Zheng L, Yuan Q, Zhou X. Intestinal microbiota: a potential target for the treatment of postmenopausal osteoporosis. Bone Res 2017; 5(1): 17046
CrossRef
Google scholar
|
[38] |
Sapra L, Dar HY, Bhardwaj A, Pandey A, Kumari S, Azam Z, Upmanyu V, Anwar A, Shukla P, Mishra PK, Saini C, Verma B, Srivastava RK. Lactobacillus rhamnosus attenuates bone loss and maintains bone health by skewing Treg-Th17 cell balance in Ovx mice. Sci Rep 2021; 11(1): 1807
CrossRef
Google scholar
|
[39] |
Xie H, Hua Z, Guo M, Lin S, Zhou Y, Weng Z, Wu L, Chen Z, Xu Z, Li W. Gut microbiota and metabonomics used to explore the mechanism of Qing’e Pills in alleviating osteoporosis. Pharm Biol 2022; 60(1): 785–800
CrossRef
Google scholar
|
[40] |
Terashima A, Takayanagi H. Overview of osteoimmunology. Calcif Tissue Int 2018; 102(5): 503–511
CrossRef
Google scholar
|
[41] |
Fasching P, Stradner M, Graninger W, Dejaco C, Fessler J. Therapeutic potential of targeting the Th17/Treg axis in autoimmune disorders. Molecules 2017; 22(1): 134
CrossRef
Google scholar
|
[42] |
Li JY, Chassaing B, Tyagi AM, Vaccaro C, Luo T, Adams J, Darby TM, Weitzmann MN, Mulle JG, Gewirtz AT, Jones RM, Pacifici R. Sex steroid deficiency-associated bone loss is microbiota dependent and prevented by probiotics. J Clin Invest 2016; 126(6): 2049–2063
CrossRef
Google scholar
|
[43] |
Cenci S, Weitzmann MN, Roggia C, Namba N, Novack D, Woodring J, Pacifici R. Estrogen deficiency induces bone loss by enhancing T-cell production of TNF-alpha. J Clin Invest 2000; 106(10): 1229–1237
CrossRef
Google scholar
|
[44] |
Li JY, Tawfeek H, Bedi B, Yang X, Adams J, Gao KY, Zayzafoon M, Weitzmann MN, Pacifici R. Ovariectomy disregulates osteoblast and osteoclast formation through the T-cell receptor CD40 ligand. Proc Natl Acad Sci USA 2011; 108(2): 768–773
CrossRef
Google scholar
|
[45] |
Uehara IA, Soldi LR, Silva MJB. Current perspectives of osteoclastogenesis through estrogen modulated immune cell cytokines. Life Sci 2020; 256: 117921
CrossRef
Google scholar
|
[46] |
Wang X, Sun B, Wang Y, Gao P, Song J, Chang W, Xiao Z, Xi Y, Li Z, An F, Yan C. Research progress of targeted therapy regulating Th17/Treg balance in bone immune diseases. Front Immunol 2024; 15: 1333993
CrossRef
Google scholar
|
[47] |
Zhu L, Hua F, Ding W, Ding K, Zhang Y, Xu C. The correlation between the Th17/Treg cell balance and bone health. Immun Ageing 2020; 17(1): 30
CrossRef
Google scholar
|
[48] |
Yu M, Malik Tyagi A, Li JY, Adams J, Denning TL, Weitzmann MN, Jones RM, Pacifici R. PTH induces bone loss via microbial-dependent expansion of intestinal TNF+ T cells and Th17 cells. Nat Commun 2020; 11(1): 468
CrossRef
Google scholar
|
[49] |
Yu M, Pal S, Paterson CW, Li JY, Tyagi AM, Adams J, Coopersmith CM, Weitzmann MN, Pacifici R. Ovariectomy induces bone loss via microbial-dependent trafficking of intestinal TNF+ T cells and Th17 cells. J Clin Invest 2021; 131(4): e143137
CrossRef
Google scholar
|
[50] |
Ibáñez L, Rouleau M, Wakkach A, Blin-Wakkach C. Gut microbiome and bone. Joint Bone Spine 2019; 86(1): 43–47
CrossRef
Google scholar
|
[51] |
Zhang YW, Cao MM, Li YJ, Lu PP, Dai GC, Zhang M, Wang H, Rui YF. Fecal microbiota transplantation ameliorates bone loss in mice with ovariectomy-induced osteoporosis via modulating gut microbiota and metabolic function. J Orthop Translat 2022; 37: 46–60
CrossRef
Google scholar
|
[52] |
Hsu E, Pacifici R. From osteoimmunology to osteomicrobiology: how the microbiota and the immune system regulate bone. Calcif Tissue Int 2018; 102(5): 512–521
CrossRef
Google scholar
|
[53] |
Zhao F, Guo Z, Kwok LY, Zhao Z, Wang K, Li Y, Sun Z, Zhao J, Zhang H. Bifidobacterium lactis Probio-M8 improves bone metabolism in patients with postmenopausal osteoporosis, possibly by modulating the gut microbiota. Eur J Nutr 2023; 62: 965–976
CrossRef
Google scholar
|
[54] |
Jafarnejad S, Djafarian K, Fazeli MR, Yekaninejad MS, Rostamian A, Keshavarz SA. Effects of a multispecies probiotic supplement on bone health in osteopenic postmenopausal women: A randomized, double-blind, controlled trial. J Am Coll Nutr 2017; 36(7): 497–506
CrossRef
Google scholar
|
[55] |
Resciniti SM, Biesiekierski JR, Ghasem-Zadeh A, Moschonis G. The effectiveness of a lactobacilli-based probiotic food supplement on bone mineral density and bone metabolism in Australian early postmenopausal women: protocol for a double-blind randomized placebo-controlled Trial. Nutrients 2024; 16(8): 1150
CrossRef
Google scholar
|
[56] |
Lambert MNT, Thybo CB, Lykkeboe S, Rasmussen LM, Frette X, Christensen LP, Jeppesen PB. Combined bioavailable isoflavones and probiotics improve bone status and estrogen metabolism in postmenopausal osteopenic women: a randomized controlled trial. Am J Clin Nutr 2017; 106(3): 909–920
CrossRef
Google scholar
|
[57] |
Gupta V, Garg R. Probiotics. Indian J Med Microbiol 2009; 27(3): 202–209
CrossRef
Google scholar
|
[58] |
Britton RA, Irwin R, Quach D, Schaefer L, Zhang J, Lee T, Parameswaran N, McCabe LR. Probiotic L. reuteri treatment prevents bone loss in a menopausal ovariectomized mouse model. J Cell Physiol 2014; 229(11): 1822–1830
CrossRef
Google scholar
|
[59] |
Chen J, Liu X, Li S, Li J, Fang G, Chen Y, Zhang X. Effects of Lactobacillus acidophilus and L. reuteri on bone mass and gut microbiota in ovariectomized mice. Cell Mol Biol 2023; 69(9): 43–51
CrossRef
Google scholar
|
[60] |
Ribeiro JL, Santos TA, Garcia MT, Carvalho B, Esteves J, Moraes RM, Anbinder AL. Heat-killed Limosilactobacillus reuteri ATCC PTA 6475 prevents bone loss in ovariectomized mice: A preliminary study. PLoS One 2024; 19(5): e0304358
CrossRef
Google scholar
|
[61] |
Ohlsson C, Engdahl C, Fak F, Andersson A, Windahl SH, Farman HH, Moverare-Skrtic S, Islander U, Sjogren K. Probiotics protect mice from ovariectomy-induced cortical bone loss. PLoS One 2014; 9(3): e92368
CrossRef
Google scholar
|
[62] |
Rahmani D, Faal B, Zali H, Tackallou SH, Niknam Z. The beneficial effects of simultaneous supplementation of Lactobacillus reuteri and calcium fluoride nanoparticles on ovariectomy-induced osteoporosis. BMC Complement Med Ther 2023; 23(1): 340
CrossRef
Google scholar
|
[63] |
Montazeri-Najafabady N, Ghasemi Y, Dabbaghmanesh MH, Talezadeh P, Koohpeyma F, Gholami A. Supportive role of probiotic strains in protecting rats from ovariectomy-induced cortical bone loss. Probiotics Antimicrob Proteins 2019; 11(4): 1145–1154
CrossRef
Google scholar
|
[64] |
Tsai WH, Lin WC, Chou CH, Yang LC. The probiotic Lactiplantibacillus plantarum attenuates ovariectomy-induced osteoporosis through osteoimmunological signaling. Food Funct 2023; 14(15): 6929–6940
CrossRef
Google scholar
|
[65] |
Lee S, Jung DH, Park M, Yeon SW, Jung SH, Yun SI, Park HO, Yoo W. The effect of Lactobacillus gasseri BNR17 on postmenopausal symptoms in ovariectomized rats. J Microbiol Biotechnol 2021; 31(9): 1281–1287
CrossRef
Google scholar
|
[66] |
Guo M, Liu H, Yu Y, Zhu X, Xie H, Wei C, Mei C, Shi Y, Zhou N, Qin K, Li W. Lactobacillus rhamnosus GG ameliorates osteoporosis in ovariectomized rats by regulating the Th17/Treg balance and gut microbiota structure. Gut Microbes 2023; 15(1): 2190304
CrossRef
Google scholar
|
[67] |
Nancib A, Nancib N, Meziane-Cherif D, Boubendir A, Fick M, Boudrant J. Joint effect of nitrogen sources and B vitamin supplementation of date juice on lactic acid production by Lactobacillus casei subsp. rhamnosus. Bioresour Technol 2005; 96(1): 63–67
CrossRef
Google scholar
|
[68] |
Wu J, Hu M, Jiang H, Ma J, Xie C, Zhang Z, Zhou X, Zhao J, Tao Z, Meng Y, Cai Z, Song T, Zhang C, Gao R, Cai C, Song H, Gao Y, Lin T, Wang C, Zhou X. Endothelial cell-derived lactate triggers bone mesenchymal stem cell histone lactylation to attenuate osteoporosis. Adv Sci (Weinh) 2023; 10(31): 2301300
CrossRef
Google scholar
|
[69] |
Angelin A, Gil-de-Gomez L, Dahiya S, Jiao J, Guo L, Levine MH, Wang Z, Quinn WJ 3rd, Kopinski PK, Wang L, Akimova T, Liu Y, Bhatti TR, Han R, Laskin BL, Baur JA, Blair IA, Wallace DC, Hancock WW, Beier UH. Foxp3 reprograms T cell metabolism to function in low-glucose, high-lactate environments. Cell Metab 2017; 25(6): 1282–1293.e7
CrossRef
Google scholar
|
[70] |
Gu J, Zhou J, Chen Q, Xu X, Gao J, Li X, Shao Q, Zhou B, Zhou H, Wei S, Wang Q, Liang Y, Lu L. Tumor metabolite lactate promotes tumorigenesis by modulating MOESIN lactylation and enhancing TGF-beta signaling in regulatory T cells. Cell Rep 2022; 40(3): 111122
CrossRef
Google scholar
|
[71] |
Rao D, Stunnenberg JA, Lacroix R, Dimitriadis P, Kaplon J, Verburg F, van van Royen PT, Hoefsmit EP, Renner K, Blank CU, Peeper DS. Acidity-mediated induction of FoxP3+ regulatory T cells. Eur J Immunol 2023; 53(6): 2250258
CrossRef
Google scholar
|
[72] |
Tuomela K, Levings MK. Acidity promotes the differentiation of immunosuppressive regulatory T cells. Eur J Immunol 2023; 53(6): e2350511
CrossRef
Google scholar
|
[73] |
Zhou J, Gu J, Qian Q, Zhang Y, Huang T, Li X, Liu Z, Shao Q, Liang Y, Qiao L, Xu X, Chen Q, Xu Z, Li Y, Gao J, Pan Y, Wang Y, O’Connor R, Hippen KL, Lu L, Blazar BR. Lactate supports Treg function and immune balance via MGAT1 effects on N-glycosylation in the mitochondria. J Clin Invest 2024; 134(20): e175897
CrossRef
Google scholar
|
[74] |
Zhang YT, Xing ML, Fang HH, Li WD, Wu L, Chen ZP. Effects of lactate on metabolism and differentiation of CD4+ T cells. Mol Immunol 2023; 154: 96–107
CrossRef
Google scholar
|
[75] |
Tyagi AM, Yu M, Darby TM, Vaccaro C, Li JY, Owens JA, Hsu E, Adams J, Weitzmann MN, Jones RM, Pacifici R. The microbial metabolite butyrate stimulates bone formation via T regulatory cell-mediated regulation of WNT10B expression. Immunity 2018; 49(6): 1116–1131.e7
CrossRef
Google scholar
|
[76] |
Grüner N, Ortlepp AL, Mattner J. Pivotal role of intestinal microbiota and intraluminal metabolites for the maintenance of gut-bone physiology. Int J Mol Sci 2023; 24(6): 5161
CrossRef
Google scholar
|
[77] |
Sapra L, Shokeen N, Porwal K, Saini C, Bhardwaj A, Mathew M, Mishra PK, Chattopadhyay N, Dar HY, Verma B, Srivastava RK. Bifidobacterium longum ameliorates ovariectomy-induced bone loss via enhancing anti-osteoclastogenic and immunomodulatory potential of regulatory B cells (Bregs). Front Immunol 2022; 13: 875788
CrossRef
Google scholar
|
[78] |
Parvaneh M, Jamaluddin R, Ebrahimi M, Karimi G, Sabran MR. Assessing the effects of probiotic supplementation, single strain versus mixed strains, on femoral mineral density and osteoblastic gene mRNA expression in rats. J Bone Miner Metab 2024; 42(3): 290–301
CrossRef
Google scholar
|
[79] |
Zhang J, Liang X, Tian X, Zhao M, Mu Y, Yi H, Zhang Z, Zhang L. Bifidobacterium improves oestrogen-deficiency-induced osteoporosis in mice by modulating intestinal immunity. Food Funct 2024; 15(4): 1840–1851
CrossRef
Google scholar
|
[80] |
Ohlsson C, Lawenius L, Andersson A, Gustafsson K, Wu J, Lagerquist M, Moverare-Skrtic S, Islander U, Sjogren K. Mild stimulatory effect of a probiotic mix on bone mass when treatment is initiated 1.5 weeks after ovariectomy in mice. Am J Physiol Endocrinol Metab 2021; 320(3): E591–E597
CrossRef
Google scholar
|
[81] |
Gholami A, Dabbaghmanesh MH, Ghasemi Y, Koohpeyma F, Talezadeh P, Montazeri-Najafabady N. The ameliorative role of specific probiotic combinations on bone loss in the ovariectomized rat model. BMC Complement Med Ther 2022; 22(1): 241
CrossRef
Google scholar
|
[82] |
Chen YC, Greenbaum J, Shen H, Deng HW. Association between gut microbiota and bone health: potential mechanisms and prospective. J Clin Endocrinol Metab 2017; 102(10): 3635–3646
CrossRef
Google scholar
|
[83] |
Wang J, Wu S, Zhang Y, Yang J, Hu Z. Gut microbiota and calcium balance. Front Microbiol 2022; 13: 1033933
CrossRef
Google scholar
|
[84] |
Tu Y, Yang R, Xu X, Zhou X. The microbiota-gut-bone axis and bone health. J Leukoc Biol 2021; 110(3): 525–537
CrossRef
Google scholar
|
[85] |
D’Amelio P, Sassi F. Gut microbiota, immune system, and bone. Calcif Tissue Int 2018; 102(4): 415–425
CrossRef
Google scholar
|
[86] |
Peng M, Biswas D. Short chain and polyunsaturated fatty acids in host gut health and foodborne bacterial pathogen inhibition. Crit Rev Food Sci Nutr 2017; 57(18): 3987–4002
CrossRef
Google scholar
|
[87] |
Gao Y, Davis B, Zhu W, Zheng N, Meng D, Walker WA. Short-chain fatty acid butyrate, a breast milk metabolite, enhances immature intestinal barrier function genes in response to inflammation in vitro and in vivo. Am J Physiol Gastrointest Liver Physiol 2021; 320(4): G521–G530
CrossRef
Google scholar
|
[88] |
Kim CH. Complex regulatory effects of gut microbial short-chain fatty acids on immune tolerance and autoimmunity. Cell Mol Immunol 2023; 20(4): 341–350
CrossRef
Google scholar
|
[89] |
Bai Y, Li Y, Marion T, Tong Y, Zaiss MM, Tang Z, Zhang Q, Liu Y, Luo Y. Resistant starch intake alleviates collagen-induced arthritis in mice by modulating gut microbiota and promoting concomitant propionate production. J Autoimmun 2021; 116: 102564
CrossRef
Google scholar
|
[90] |
Cho KM, Kim YS, Lee M, Lee HY, Bae YS. Isovaleric acid ameliorates ovariectomy-induced osteoporosis by inhibiting osteoclast differentiation. J Cell Mol Med 2021; 25(9): 4287–4297
CrossRef
Google scholar
|
[91] |
Abrams SA, Griffin IJ, Hawthorne KM, Liang L, Gunn SK, Darlington G, Ellis KJ. A combination of prebiotic short- and long-chain inulin-type fructans enhances calcium absorption and bone mineralization in young adolescents. Am J Clin Nutr 2005; 82(2): 471–476
CrossRef
Google scholar
|
[92] |
Furusawa Y, Obata Y, Fukuda S, Endo TA, Nakato G, Takahashi D, Nakanishi Y, Uetake C, Kato K, Kato T, Takahashi M, Fukuda NN, Murakami S, Miyauchi E, Hino S, Atarashi K, Onawa S, Fujimura Y, Lockett T, Clarke JM, Topping DL, Tomita M, Hori S, Ohara O, Morita T, Koseki H, Kikuchi J, Honda K, Hase K, Ohno H. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 2013; 504(7480): 446–450
CrossRef
Google scholar
|
[93] |
Morrison DJ, Preston T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes 2016; 7(3): 189–200
CrossRef
Google scholar
|
[94] |
Lu X, Xue Z, Qian Y, Wei S, Qiao Y, Zhang W, Lu H. Changes in intestinal microflora and its metabolites underlie the cognitive impairment in preterm rats. Front Cell Infect Microbiol 2022; 12: 945851
CrossRef
Google scholar
|
[95] |
Zheng Y, Wu Y, Tao L, Chen X, Jones TJ, Wang K, Hu F. Chinese propolis prevents obesity and metabolism syndromes induced by a high fat diet and accompanied by an altered gut microbiota structure in mice. Nutrients 2020; 12(4): 959
CrossRef
Google scholar
|
[96] |
Ziętek M, Celewicz Z, Szczuko M. Short-chain fatty acids, maternal microbiota and metabolism in pregnancy. Nutrients 2021; 13(4): 1244
CrossRef
Google scholar
|
[97] |
Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T, Mende DR, Li J, Xu J, Li S, Li D, Cao J, Wang B, Liang H, Zheng H, Xie Y, Tap J, Lepage P, Bertalan M, Batto JM, Hansen T, Le Paslier D, Linneberg A, Nielsen HB, Pelletier E, Renault P, Sicheritz-Ponten T, Turner K, Zhu H, Yu C, Li S, Jian M, Zhou Y, Li Y, Zhang X, Li S, Qin N, Yang H, Wang J, Brunak S, Dore J, Guarner F, Kristiansen K, Pedersen O, Parkhill J, Weissenbach J, Meta HITC, Bork P, Ehrlich SD, Wang J. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010; 464(7285): 59–65
CrossRef
Google scholar
|
[98] |
Zhernakova A, Kurilshikov A, Bonder MJ, Tigchelaar EF, Schirmer M, Vatanen T, Mujagic Z, Vila AV, Falony G, Vieira-Silva S, Wang J, Imhann F, Brandsma E, Jankipersadsing SA, Joossens M, Cenit MC, Deelen P, Swertz MA; LifeLines cohort study; Weersma RK, Feskens EJ, Netea MG, Gevers D, Jonkers D, Franke L, Aulchenko YS, Huttenhower C, Raes J, Hofker MH, Xavier RJ, Wijmenga C, Fu J. LifeLines cohort s, Weersma RK, Feskens EJ, Netea MG, Gevers D, Jonkers D, Franke L, Aulchenko YS, Huttenhower C, Raes J, Hofker MH, Xavier RJ, Wijmenga C and Fu J. Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science 2016; 352(6285): 565–569
CrossRef
Google scholar
|
[99] |
Louis P, Flint HJ. Formation of propionate and butyrate by the human colonic microbiota. Environ Microbiol 2017; 19(1): 29–41
CrossRef
Google scholar
|
[100] |
Neis EP, Dejong CH, Rensen SS. The role of microbial amino acid metabolism in host metabolism. Nutrients 2015; 7(4): 2930–2946
CrossRef
Google scholar
|
[101] |
Rios-Covian D, Gonzalez S, Nogacka AM, Arboleya S, Salazar N, Gueimonde M, de Los Reyes-Gavilan CG. An overview on fecal branched short-chain fatty acids along human life and as related with body mass index: associated dietary and anthropometric factors. Front Microbiol 2020; 11: 973
CrossRef
Google scholar
|
[102] |
Lynch CJ, Adams SH. Branched-chain amino acids in metabolic signalling and insulin resistance. Nat Rev Endocrinol 2014; 10(12): 723–736
CrossRef
Google scholar
|
[103] |
Macfarlane GT, Macfarlane S. Bacteria, colonic fermentation, and gastrointestinal health. J AOAC Int 2012; 95(1): 50–60
CrossRef
Google scholar
|
[104] |
Ramos Meyers G, Samouda H, Bohn T. Short chain fatty acid metabolism in relation to gut microbiota and genetic variability. Nutrients 2022; 14(24): 5361
CrossRef
Google scholar
|
[105] |
Scholz-Ahrens KE, Ade P, Marten B, Weber P, Timm W, Asil Y, Gluer CC, Schrezenmeir J. Prebiotics, probiotics, and synbiotics affect mineral absorption, bone mineral content, and bone structure. J Nutr 2007; 137(3): 838S–846S
CrossRef
Google scholar
|
[106] |
Onyszkiewicz M, Jaworska K, Ufnal M. Short chain fatty acids and methylamines produced by gut microbiota as mediators and markers in the circulatory system. Exp Biol Med (Maywood) 2020; 245(2): 166–175
CrossRef
Google scholar
|
[107] |
Lucas S, Omata Y, Hofmann J, Bottcher M, Iljazovic A, Sarter K, Albrecht O, Schulz O, Krishnacoumar B, Kronke G, Herrmann M, Mougiakakos D, Strowig T, Schett G, Zaiss MM. Short-chain fatty acids regulate systemic bone mass and protect from pathological bone loss. Nat Commun 2018; 9(1): 55
CrossRef
Google scholar
|
[108] |
Chakraborti CK. New-found link between microbiota and obesity. World J Gastrointest Pathophysiol 2015; 6(4): 110–119
CrossRef
Google scholar
|
[109] |
Alexander C, Swanson KS, Fahey GC Jr, Garleb KA. Perspective: physiologic importance of short-chain fatty acids from nondigestible carbohydrate fermentation. Adv Nutr 2019; 10(4): 576–589
CrossRef
Google scholar
|
[110] |
He J, Zhang P, Shen L, Niu L, Tan Y, Chen L, Zhao Y, Bai L, Hao X, Li X, Zhang S, Zhu L. Short-chain fatty acids and their association with signalling pathways in inflammation, glucose and lipid metabolism. Int J Mol Sci 2020; 21(17): 6356
CrossRef
Google scholar
|
[111] |
Bergman EN. Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiol Rev 1990; 70(2): 567–590
CrossRef
Google scholar
|
[112] |
Zaiss MM, Jones RM, Schett G, Pacifici R. The gut-bone axis: how bacterial metabolites bridge the distance. J Clin Invest 2019; 129(8): 3018–3028
CrossRef
Google scholar
|
[113] |
Maslowski KM, Vieira AT, Ng A, Kranich J, Sierro F, Yu D, Schilter HC, Rolph MS, Mackay F, Artis D, Xavier RJ, Teixeira MM, Mackay CR. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 2009; 461(7268): 1282–1286
CrossRef
Google scholar
|
[114] |
Brown AJ, Goldsworthy SM, Barnes AA, Eilert MM, Tcheang L, Daniels D, Muir AI, Wigglesworth MJ, Kinghorn I, Fraser NJ, Pike NB, Strum JC, Steplewski KM, Murdock PR, Holder JC, Marshall FH, Szekeres PG, Wilson S, Ignar DM, Foord SM, Wise A, Dowell SJ. The orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J Biol Chem 2003; 278(13): 11312–11319
CrossRef
Google scholar
|
[115] |
Thangaraju M, Cresci GA, Liu K, Ananth S, Gnanaprakasam JP, Browning DD, Mellinger JD, Smith SB, Digby GJ, Lambert NA, Prasad PD, Ganapathy V. GPR109A is a G-protein-coupled receptor for the bacterial fermentation product butyrate and functions as a tumor suppressor in colon. Cancer Res 2009; 69(7): 2826–2832
CrossRef
Google scholar
|
[116] |
Melhem H, Kaya B, Ayata CK, Hruz P, Niess JH. Metabolite-sensing G protein-coupled receptors connect the diet-microbiota-metabolites axis to inflammatory bowel disease. Cells 2019; 8(5): 450
CrossRef
Google scholar
|
[117] |
Fleet JC, Schoch RD. Molecular mechanisms for regulation of intestinal calcium absorption by vitamin D and other factors. Crit Rev Clin Lab Sci 2010; 47(4): 181–195
CrossRef
Google scholar
|
[118] |
Kishi M, Fukaya M, Tsukamoto Y, Nagasawa T, Takehana K, Nishizawa N. Enhancing effect of dietary vinegar on the intestinal absorption of calcium in ovariectomized rats. Biosci Biotechnol Biochem 1999; 63(5): 905–910
CrossRef
Google scholar
|
[119] |
Trinidad TP, Wolever TM, Thompson LU. Effect of acetate and propionate on calcium absorption from the rectum and distal colon of humans. Am J Clin Nutr 1996; 63(4): 574–578
CrossRef
Google scholar
|
[120] |
Zhu K, Prince RL. Calcium and bone. Clin Biochem 2012; 45(12): 936–942
CrossRef
Google scholar
|
[121] |
Whisner CM, Martin BR, Nakatsu CH, Story JA, MacDonald-Clarke CJ, McCabe LD, McCabe GP, Weaver CM. Soluble corn fiber increases calcium absorption associated with shifts in the gut microbiome: A randomized dose-response trial in free-living pubertal females. J Nutr 2016; 146(7): 1298–1306
CrossRef
Google scholar
|
[122] |
Bielik V, Kolisek M. Bioaccessibility and bioavailability of minerals in relation to a healthy gut microbiome. Int J Mol Sci 2021; 22(13): 6803
CrossRef
Google scholar
|
[123] |
Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA, Bohlooly YM, Glickman JN, Garrett WS. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 2013; 341(6145): 569–573
CrossRef
Google scholar
|
[124] |
Komatsu N, Okamoto K, Sawa S, Nakashima T, Oh-hora M, Kodama T, Tanaka S, Bluestone JA, Takayanagi H. Pathogenic conversion of Foxp3+ T cells into TH17 cells in autoimmune arthritis. Nat Med 2014; 20(1): 62–68
CrossRef
Google scholar
|
[125] |
Zou F, Qiu Y, Huang Y, Zou H, Cheng X, Niu Q, Luo A, Sun J. Effects of short-chain fatty acids in inhibiting HDAC and activating p38 MAPK are critical for promoting B10 cell generation and function. Cell Death Dis 2021; 12(6): 582
CrossRef
Google scholar
|
[126] |
Min HK, Na HS, Jhun J, Lee SY, Choi SS, Park GE, Lee JS, Um IG, Lee SY, Seo H, Shin TS, Kim YK, Lee JJ, Kwok SK, Cho ML, Park SH. Identification of gut dysbiosis in axial spondyloarthritis patients and improvement of experimental ankylosing spondyloarthritis by microbiome-derived butyrate with immune-modulating function. Front Immunol 2023; 14: 1096565
CrossRef
Google scholar
|
[127] |
Yang KL, Mullins BJ, Lejeune A, Ivanova E, Shin J, Bajwa S, Possemato R, Cadwell K, Scher JU, Koralov SB. Mitigation of osteoclast-mediated arthritic bone remodeling by short chain fatty acids. Arthritis Rheumatol 2024; 76(4): 647–659
CrossRef
Google scholar
|
[128] |
Hosseinkhani F, Heinken A, Thiele I, Lindenburg PW, Harms AC, Hankemeier T. The contribution of gut bacterial metabolites in the human immune signaling pathway of non-communicable diseases. Gut Microbes 2021; 13(1): 1882927
CrossRef
Google scholar
|
[129] |
Wu YL, Zhang CH, Teng Y, Pan Y, Liu NC, Liu PX, Zhu X, Su XL, Lin J. Propionate and butyrate attenuate macrophage pyroptosis and osteoclastogenesis induced by CoCrMo alloy particles. Mil Med Res 2022; 9(1): 46
CrossRef
Google scholar
|
[130] |
Wallimann A, Magrath W, Pugliese B, Stocker N, Westermann P, Heider A, Gehweiler D, Zeiter S, Claesson MJ, Richards RG, Akdis CA, Hernandez CJ, O’Mahony L, Thompson K, Moriarty TF. Butyrate inhibits osteoclast activity in vitro and regulates systemic inflammation and bone healing in a murine osteotomy model compared to antibiotic-treated mice. Mediators Inflamm 2021; 2021: 8817421
CrossRef
Google scholar
|
[131] |
Wallimann A, Magrath W, Thompson K, Moriarty T, Richards RG, Akdis CA, O’Mahony L, Hernandez CJ. Gut microbial-derived short-chain fatty acids and bone: a potential role in fracture healing. Eur Cell Mater 2021; 41: 454–470
CrossRef
Google scholar
|
[132] |
Zhao G, Monier-Faugere MC, Langub MC, Geng Z, Nakayama T, Pike JW, Chernausek SD, Rosen CJ, Donahue LR, Malluche HH, Fagin JA, Clemens TL. Targeted overexpression of insulin-like growth factor I to osteoblasts of transgenic mice: increased trabecular bone volume without increased osteoblast proliferation. Endocrinology 2000; 141(7): 2674–2682
CrossRef
Google scholar
|
[133] |
Yan J, Herzog JW, Tsang K, Brennan CA, Bower MA, Garrett WS, Sartor BR, Aliprantis AO, Charles JF. Gut microbiota induce IGF-1 and promote bone formation and growth. Proc Natl Acad Sci USA 2016; 113(47): E7554–E7563
CrossRef
Google scholar
|
[134] |
Wang Y, Nishida S, Elalieh HZ, Long RK, Halloran BP, Bikle DD. Role of IGF-I signaling in regulating osteoclastogenesis. J Bone Miner Res 2006; 21(9): 1350–1358
CrossRef
Google scholar
|
[135] |
Zaibi MS, Stocker CJ, O’Dowd J, Davies A, Bellahcene M, Cawthorne MA, Brown AJ, Smith DM, Arch JR. Roles of GPR41 and GPR43 in leptin secretory responses of murine adipocytes to short chain fatty acids. FEBS Lett 2010; 584(11): 2381–2386
CrossRef
Google scholar
|
[136] |
Lin Z, Yu G, Xiong S, Lin Y, Li Z. Leptin and melatonin’s effects on OVX rodents’ bone metabolism. Front Endocrinol (Lausanne) 2023; 14: 1185476
CrossRef
Google scholar
|
[137] |
Mei L, Li M, Zhang T. MicroRNA miR-874–3p inhibits osteoporosis by targeting leptin (LEP). Bioengineered 2021; 12(2): 11756–11767
CrossRef
Google scholar
|
[138] |
Zheng B, Jiang J, Luo K, Liu L, Lin M, Chen Y, Yan F. Increased osteogenesis in osteoporotic bone marrow stromal cells by overexpression of leptin. Cell Tissue Res 2015; 361(3): 845–856
CrossRef
Google scholar
|
[139] |
Tu Y, Kuang X, Zhang L, Xu X. The associations of gut microbiota, endocrine system and bone metabolism. Front Microbiol 2023; 14: 1124945
CrossRef
Google scholar
|
[140] |
Pacheco-Pantoja EL, Ranganath LR, Gallagher JA, Wilson PJ, Fraser WD. Receptors and effects of gut hormones in three osteoblastic cell lines. BMC Physiol 2011; 11(1): 12
CrossRef
Google scholar
|
[141] |
Li Z, Li S, Wang N, Xue P, Li Y. Liraglutide, a glucagon-like peptide-1 receptor agonist, suppresses osteoclastogenesis through the inhibition of NF-kappaB and MAPK pathways via GLP-1R. Biomed Pharmacother 2020; 130: 110523
CrossRef
Google scholar
|
[142] |
Kim TY, Shoback DM, Black DM, Rogers SJ, Stewart L, Carter JT, Posselt AM, King NJ, Schafer AL. Increases in PYY and uncoupling of bone turnover are associated with loss of bone mass after gastric bypass surgery. Bone 2020; 131: 115115
CrossRef
Google scholar
|
[143] |
Lee NJ, Nguyen AD, Enriquez RF, Doyle KL, Sainsbury A, Baldock PA, Herzog H. Osteoblast specific Y1 receptor deletion enhances bone mass. Bone 2011; 48(3): 461–467
CrossRef
Google scholar
|
[144] |
Reigstad CS, Salmonson CE, Rainey JF 3rd, Szurszewski JH, Linden DR, Sonnenburg JL, Farrugia G, Kashyap PC. Gut microbes promote colonic serotonin production through an effect of short-chain fatty acids on enterochromaffin cells. FASEB J 2015; 29(4): 1395–1403
CrossRef
Google scholar
|
[145] |
Xie Y, Wang C, Zhao D, Wang C, Li C. Dietary proteins regulate serotonin biosynthesis and catabolism by specific gut microbes. J Agric Food Chem 2020; 68(21): 5880–5890
CrossRef
Google scholar
|
[146] |
Ducy P, Karsenty G. The two faces of serotonin in bone biology. J Cell Biol 2010; 191(1): 7–13
CrossRef
Google scholar
|
[147] |
Knudsen JK, Leutscher P, Sorensen S. Gut microbiota in bone health and diabetes. Curr Osteoporos Rep 2021; 19(4): 462–479
CrossRef
Google scholar
|
[148] |
Lee GR. The balance of Th17 versus Treg cells in autoimmunity. Int J Mol Sci 2018; 19(3): 730
CrossRef
Google scholar
|
[149] |
Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M, Weiner HL, Kuchroo VK. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 2006; 441(7090): 235–238
CrossRef
Google scholar
|
[150] |
de Vries TJ, El Bakkali I, Kamradt T, Schett G, Jansen IDC, D’Amelio P. What are the peripheral blood determinants for increased osteoclast formation in the various inflammatory diseases associated with bone loss. Front Immunol 2019; 10: 505
CrossRef
Google scholar
|
[151] |
Luu M, Pautz S, Kohl V, Singh R, Romero R, Lucas S, Hofmann J, Raifer H, Vachharajani N, Carrascosa LC, Lamp B, Nist A, Stiewe T, Shaul Y, Adhikary T, Zaiss MM, Lauth M, Steinhoff U, Visekruna A. The short-chain fatty acid pentanoate suppresses autoimmunity by modulating the metabolic-epigenetic crosstalk in lymphocytes. Nat Commun 2019; 10(1): 760
CrossRef
Google scholar
|
[152] |
Zi C, Wang D, Gao Y, He L. The role of Th17 cells in endocrine organs: Involvement of the gut, adipose tissue, liver and bone. Front Immunol 2023; 13: 1104943
CrossRef
Google scholar
|
[153] |
Okamoto K, Takayanagi H. Regulation of bone by the adaptive immune system in arthritis. Arthritis Res Ther 2011; 13(3): 219
CrossRef
Google scholar
|
[154] |
Honma M, Ikebuchi Y, Suzuki H. RANKL as a key figure in bridging between the bone and immune system: its physiological functions and potential as a pharmacological target. Pharmacol Ther 2021; 218: 107682
CrossRef
Google scholar
|
[155] |
Lorenzo J. From the gut to bone: connecting the gut microbiota with Th17 T lymphocytes and postmenopausal osteoporosis. J Clin Invest 2021; 131(5): e146619
CrossRef
Google scholar
|
[156] |
Khosla S. The microbiome adds to the complexity of parathyroid hormone action on bone. J Clin Invest 2020; 130(4): 1615–1617
CrossRef
Google scholar
|
[157] |
Okamoto K, Nakashima T, Shinohara M, Negishi-Koga T, Komatsu N, Terashima A, Sawa S, Nitta T, Takayanagi H. Osteoimmunology: the conceptual framework unifying the immune and skeletal systems. Physiol Rev 2017; 97(4): 1295–1349
CrossRef
Google scholar
|
[158] |
Yuan FL, Li X, Lu WG, Xu RS, Zhao YQ, Li CW, Li JP, Chen FH. Regulatory T cells as a potent target for controlling bone loss. Biochem Biophys Res Commun 2010; 402(2): 173–176
CrossRef
Google scholar
|
[159] |
Bozec A, Zaiss MM. T regulatory cells in bone remodelling. Curr Osteoporos Rep 2017; 15(3): 121–125
CrossRef
Google scholar
|
[160] |
Curotto de Lafaille MA, Lafaille JJ. Natural and adaptive foxp3+ regulatory T cells: more of the same or a division of labor?. Immunity 2009; 30(5): 626–635
CrossRef
Google scholar
|
[161] |
Hao F, Tian M, Zhang X, Jin X, Jiang Y, Sun X, Wang Y, Peng P, Liu J, Xia C, Feng Y, Wei M. Butyrate enhances CPT1A activity to promote fatty acid oxidation and iTreg differentiation. Proc Natl Acad Sci USA 2021; 118(22): e2014681118
CrossRef
Google scholar
|
[162] |
Luo CY, Wang L, Sun C, Li DJ. Estrogen enhances the functions of CD4+CD25+Foxp3+ regulatory T cells that suppress osteoclast differentiation and bone resorption in vitro. Cell Mol Immunol 2011; 8(1): 50–58
CrossRef
Google scholar
|
[163] |
Wu D, Cline-Smith A, Shashkova E, Perla A, Katyal A, Aurora R. T-Cell mediated inflammation in postmenopausal osteoporosis. Front Immunol 2021; 12: 687551
CrossRef
Google scholar
|
[164] |
Xu H, Wang W, Liu X, Huang W, Zhu C, Xu Y, Yang H, Bai J, Geng D. Targeting strategies for bone diseases: signaling pathways and clinical studies. Signal Transduct Target Ther 2023; 8(1): 202
CrossRef
Google scholar
|
[165] |
Tanaka Y. Clinical immunity in bone and joints. J Bone Miner Metab 2019; 37(1): 2–8
CrossRef
Google scholar
|
[166] |
Zhao L, Jiang S, Hantash BM. Transforming growth factor beta1 induces osteogenic differentiation of murine bone marrow stromal cells. Tissue Eng Part A 2010; 16(2): 725–733
CrossRef
Google scholar
|
[167] |
Pacifici R. Role of gut microbiota in the skeletal response to PTH. J Clin Endocrinol Metab 2021; 106(3): 636–645
CrossRef
Google scholar
|
[168] |
Yu M, D’Amelio P, Tyagi AM, Vaccaro C, Li JY, Hsu E, Buondonno I, Sassi F, Adams J, Weitzmann MN, DiPaolo R, Pacifici R. Regulatory T cells are expanded by teriparatide treatment in humans and mediate intermittent PTH-induced bone anabolism in mice. EMBO Rep 2018; 19(1): 156–171
CrossRef
Google scholar
|
[169] |
Li JY, Yu M, Pal S, Tyagi AM, Dar H, Adams J, Weitzmann MN, Jones RM, Pacifici R. Parathyroid hormone-dependent bone formation requires butyrate production by intestinal microbiota. J Clin Invest 2020; 130(4): 1767–1781
CrossRef
Google scholar
|
[170] |
Yang L, Li Z, Li X, Wang Z, Wang S, Sasaki Y, Takai H, Ogata Y. Butyric acid stimulates bone sialoprotein gene transcription. J Oral Sci 2010; 52(2): 231–237
CrossRef
Google scholar
|
[171] |
Katono T, Kawato T, Tanabe N, Suzuki N, Iida T, Morozumi A, Ochiai K, Maeno M. Sodium butyrate stimulates mineralized nodule formation and osteoprotegerin expression by human osteoblasts. Arch Oral Biol 2008; 53(10): 903–909
CrossRef
Google scholar
|
[172] |
Kondo T, Chiba T, Tousen Y. Short-chain fatty acids, acetate and propionate, directly upregulate osteoblastic differentiation. Int J Food Sci Nutr 2022; 73(6): 800–808
CrossRef
Google scholar
|
[173] |
Iida T, Kawato T, Tanaka H, Tanabe N, Nakai K, Zhao N, Suzuki N, Ochiai K, Maeno M. Sodium butyrate induces the production of cyclooxygenases and prostaglandin E2 in ROS 17/2.8 osteoblastic cells. Arch Oral Biol 2011; 56(7): 678–686
CrossRef
Google scholar
|
[174] |
Morozumi A. High concentration of sodium butyrate suppresses osteoblastic differentiation and mineralized nodule formation in ROS17/2.8 cells. J Oral Sci 2011; 53(4): 509–516
CrossRef
Google scholar
|
[175] |
Yan J, Takakura A, Zandi-Nejad K, Charles JF. Mechanisms of gut microbiota-mediated bone remodeling. Gut Microbes 2018; 9(1): 84–92
CrossRef
Google scholar
|
[176] |
Chang PV, Hao L, Offermanns S, Medzhitov R. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc Natl Acad Sci USA 2014; 111(6): 2247–2252
CrossRef
Google scholar
|
[177] |
Kim DS, Kwon JE, Lee SH, Kim EK, Ryu JG, Jung KA, Choi JW, Park MJ, Moon YM, Park SH, Cho ML, Kwok SK. Attenuation of rheumatoid inflammation by sodium butyrate through reciprocal targeting of HDAC2 in osteoclasts and HDAC8 in T Cells. Front Immunol 2018; 9: 1525
CrossRef
Google scholar
|
[178] |
Montalvany-Antonucci CC, Duffles LF, de Arruda JAA, Zicker MC, de Oliveira S, Macari S, Garlet GP, Madeira MFM, Fukada SY, Andrade I Jr, Teixeira MM, Mackay C, Vieira AT, Vinolo MA, Silva TA. Short-chain fatty acids and FFAR2 as suppressors of bone resorption. Bone 2019; 125: 112–121
CrossRef
Google scholar
|
[179] |
Dong J, Shu G, Yang J, Wang B, Chen L, Gong Z, Zhang X. Mechanistic study on the alleviation of postmenopausal osteoporosis by Lactobacillus acidophilus through butyrate-mediated inhibition of osteoclast activity. Sci Rep 2024; 14(1): 7042
CrossRef
Google scholar
|
[180] |
Rahman MM, Kukita A, Kukita T, Shobuike T, Nakamura T, Kohashi O. Two histone deacetylase inhibitors, trichostatin A and sodium butyrate, suppress differentiation into osteoclasts but not into macrophages. Blood 2003; 101(9): 3451–3459
CrossRef
Google scholar
|
[181] |
Yang KL, Mullins BJ, Lejeune A, Ivanova E, Shin J, Bajwa S, Possemato R, Cadwell K, Scher JU, Koralov SB. Mitigation of osteoclast-mediated arthritic bone remodeling by short chain fatty acids. Arthritis Rheumatol 2024; 76(4): 647–659
CrossRef
Google scholar
|
[182] |
Wallace TC, Marzorati M, Spence L, Weaver CM, Williamson PS. New frontiers in fibers: Innovative and emerging research on the gut microbiome and bone health. J Am Coll Nutr 2017; 36(3): 218–222
CrossRef
Google scholar
|
[183] |
Kwon Y, Park C, Lee J, Park DH, Jeong S, Yun CH, Park OJ, Han SH. Regulation of bone cell differentiation and activation by microbe-associated molecular patterns. Int J Mol Sci 2021; 22(11): 5805
CrossRef
Google scholar
|
[184] |
Karakan T, Tuohy KM, Janssen-van Solingen G. Low-dose lactulose as a prebiotic for improved gut health and enhanced mineral absorption. Front Nutr 2021; 8: 672925
CrossRef
Google scholar
|
[185] |
Li Z, Liang S, Ke L, Wang M, Gao K, Li D, Xu Z, Li N, Zhang P, Cheng W. Cell life-or-death events in osteoporosis: all roads lead to mitochondrial dynamics. Pharmacol Res 2024; 208: 107383
CrossRef
Google scholar
|
[186] |
Richardson KK, Adam GO, Ling W, Warren A, Marques-Carvalho A, Thostenson JD, Krager K, Aykin-Burns N, Byrum SD, Almeida M, Kim HN. Mitochondrial protein deacetylation by SIRT3 in osteoclasts promotes bone resorption with aging in female mice. Mol Metab 2024; 88: 102012
CrossRef
Google scholar
|
[187] |
Anderson G, Maes M. Gut dysbiosis dysregulates central and systemic homeostasis via suboptimal mitochondrial function: assessment, treatment and classification Implications. Curr Top Med Chem 2020; 20(7): 524–539
CrossRef
Google scholar
|
[188] |
Jin CJ, Engstler AJ, Sellmann C, Ziegenhardt D, Landmann M, Kanuri G, Lounis H, Schroder M, Vetter W, Bergheim I. Sodium butyrate protects mice from the development of the early signs of non-alcoholic fatty liver disease: role of melatonin and lipid peroxidation. Br J Nutr 2016; 116(10): 1682–1693
CrossRef
Google scholar
|
[189] |
Chen Y, Yang C, Deng Z, Xiang T, Ni Q, Xu J, Sun D, Luo F. Gut microbially produced tryptophan metabolite melatonin ameliorates osteoporosis via modulating SCFA and TMAO metabolism. J Pineal Res 2024; 76(3): e12954
CrossRef
Google scholar
|
[190] |
Li X, Liang T, Dai B, Chang L, Zhang Y, Hu S, Guo J, Xu S, Zheng L, Yao H, Lian H, Nie Y, Li Y, He X, Yao Z, Tong W, Wang X, Chow DHK, Xu J, Qin L. Excess glucocorticoids inhibit murine bone turnover via modulating the immunometabolism of the skeletal microenvironment. J Clin Invest 2024; 134(10): e166795
CrossRef
Google scholar
|
[191] |
Anderson G. Physiological processes underpinning the ubiquitous benefits and inter actions of melatonin, butyrate and green tea in neurodegenerative conditions. Melatonin Res 2024; 7(1): 20–46
CrossRef
Google scholar
|
[192] |
Anderson G. Melatonin, BAG-1 and cortisol circadian interactions in tumor pathogenesis and patterned immune responses. Explor Target Antitumor Ther 2023; 4: 962–993
CrossRef
Google scholar
|
/
〈 |
|
〉 |