Identification of a nanobody able to catalyze the destruction of the spike-trimer of SARS-CoV-2

Kai Wang, Duanfang Cao, Lanlan Liu, Xiaoyi Fan, Yihuan Lin, Wenting He, Yunze Zhai, Pingyong Xu, Xiyun Yan, Haikun Wang, Xinzheng Zhang, Pengyuan Yang

Front. Med. ›› 2025, Vol. 19 ›› Issue (3) : 493-506.

PDF(5286 KB)
PDF(5286 KB)
Front. Med. ›› 2025, Vol. 19 ›› Issue (3) : 493-506. DOI: 10.1007/s11684-025-1128-4
RESEARCH ARTICLE

Identification of a nanobody able to catalyze the destruction of the spike-trimer of SARS-CoV-2

Author information +
History +

Abstract

Neutralizing antibodies have been designed to specifically target and bind to the receptor binding domain (RBD) of spike (S) protein to block severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus from attaching to angiotensin converting enzyme 2 (ACE2). This study reports a distinctive nanobody, designated as VHH21, that directly catalyzes the S-trimer into an irreversible transition state through postfusion conformational changes. Derived from camels immunized with multiple antigens, a set of nanobodies with high affinity for the S1 protein displays abilities to neutralize pseudovirion infections with a broad resistance to variants of concern of SARS-CoV-2, including SARS-CoV and BatRaTG13. Importantly, a super-resolution screening and analysis platform based on visual fluorescence probes was designed and applied to monitor single proteins and protein subunits. A spontaneously occurring dimeric form of VHH21 was obtained to rapidly destroy the S-trimer. Structural analysis via cryogenic electron microscopy revealed that VHH21 targets specific conserved epitopes on the S protein, distinct from the ACE2 binding site on the RBD, which destabilizes the fusion process. This research highlights the potential of VHH21 as an abzyme-like nanobody (nanoabzyme) possessing broad-spectrum binding capabilities and highly effective anti-viral properties and offers a promising strategy for combating coronavirus outbreaks.

Keywords

nanobody / SARS-CoV-2 / spike-trimer / catalyzation / rapid destruction

Cite this article

Download citation ▾
Kai Wang, Duanfang Cao, Lanlan Liu, Xiaoyi Fan, Yihuan Lin, Wenting He, Yunze Zhai, Pingyong Xu, Xiyun Yan, Haikun Wang, Xinzheng Zhang, Pengyuan Yang. Identification of a nanobody able to catalyze the destruction of the spike-trimer of SARS-CoV-2. Front. Med., 2025, 19(3): 493‒506 https://doi.org/10.1007/s11684-025-1128-4

References

[1]
Telenti A, Arvin A, Corey L, Corti D, Diamond MS, Garcia-Sastre A, Garry RF, Holmes EC, Pang PS, Virgin HW. After the pandemic: perspectives on the future trajectory of COVID-19. Nature 2021; 596(7873): 495–504
CrossRef Google scholar
[2]
Cameroni E, Bowen JE, Rosen LE, Saliba C, Zepeda SK, Culap K, Pinto D, VanBlargan LA, De Marco A, di Iulio J, Zatta F, Kaiser H, Noack J, Farhat N, Czudnochowski N, Havenar-Daughton C, Sprouse KR, Dillen JR, Powell AE, Chen A, Maher C, Yin L, Sun D, Soriaga L, Bassi J, Silacci-Fregni C, Gustafsson C, Franko NM, Logue J, Iqbal NT, Mazzitelli I, Geffner J, Grifantini R, Chu H, Gori A, Riva A, Giannini O, Ceschi A, Ferrari P, Cippa PE, Franzetti-Pellanda A, Garzoni C, Halfmann PJ, Kawaoka Y, Hebner C, Purcell LA, Piccoli L, Pizzuto MS, Walls AC, Diamond MS, Telenti A, Virgin HW, Lanzavecchia A, Snell G, Veesler D, Corti D. Broadly neutralizing antibodies overcome SARS-CoV-2 Omicron antigenic shift. Nature 2022; 602(7898): 664–670
CrossRef Google scholar
[3]
Liu L, Iketani S, Guo Y, Chan JF, Wang M, Liu L, Luo Y, Chu H, Huang Y, Nair MS, Yu J, Chik KK, Yuen TT, Yoon C, To KK, Chen H, Yin MT, Sobieszczyk ME, Huang Y, Wang HH, Sheng Z, Yuen KY, Ho DD. Striking antibody evasion manifested by the Omicron variant of SARS-CoV-2. Nature 2022; 602(7898): 676–681
CrossRef Google scholar
[4]
Wang Q, Iketani S, Li Z, Liu L, Guo Y, Huang Y, Bowen AD, Liu M, Wang M, Yu J, Valdez R, Lauring AS, Sheng Z, Wang HH, Gordon A, Liu L, Ho DD. Alarming antibody evasion properties of rising SARS-CoV-2 BQ and XBB subvariants. Cell 2023; 186(2): 279–286.e8
CrossRef Google scholar
[5]
Jackson CB, Farzan M, Chen B, Choe H. Mechanisms of SARS-CoV-2 entry into cells. Nat Rev Mol Cell Biol 2022; 23(1): 3–20
CrossRef Google scholar
[6]
Xia S, Lan Q, Su S, Wang X, Xu W, Liu Z, Zhu Y, Wang Q, Lu L, Jiang S. The role of furin cleavage site in SARS-CoV-2 spike protein-mediated membrane fusion in the presence or absence of trypsin. Signal Transduct Target Ther 2020; 5(1): 92
CrossRef Google scholar
[7]
Xia S, Zhu Y, Liu M, Lan Q, Xu W, Wu Y, Ying T, Liu S, Shi Z, Jiang S, Lu L. Fusion mechanism of 2019-nCoV and fusion inhibitors targeting HR1 domain in spike protein. Cell Mol Immunol 2020; 17(7): 765–767
CrossRef Google scholar
[8]
Wang PF, Nair MS, Liu LH, Iketani S, Luo Y, Guo YC, Wang M, Yu J, Zhang BS, Kwong PD, Graham BS, Mascola JR, Chang JY, Yin MT, Sobieszczyk M, Kyratsous CA, Shapiro L, Sheng ZZ, Huang YX, Ho DD. Antibody resistance of SARS-CoV-2 variants B. 1.351 and B. 1.1. 7. Nature 2021; 593(7857): 130–135
CrossRef Google scholar
[9]
Chen RTE, Zhang XW, Case JB, Winkler ES, Liu Y, VanBlargan LA, Liu JY, Errico JM, Xie XP, Suryadevara N, Gilchuk P, Zost SJ, Tahan S, Droit L, Turner JS, Kim W, Schmitz AJ, Thapa M, Wang DV, Boon ACM, Presti RM, O’Halloran JA, Kim AHJ, Deepak P, Pinto D, Fremont DH, Crowe JE Jr, Corti D, Virgin HW, Ellebedy AH, Shi PY, Diamond MS. Resistance of SARS-CoV-2 variants to neutralization by monoclonal and serum-derived polyclonal antibodies. Nat Med 2021; 27(4): 717–726
CrossRef Google scholar
[10]
Hanke L, Vidakovics Perez L, Sheward DJ, Das H, Schulte T, Moliner-Morro A, Corcoran M, Achour A, Karlsson Hedestam GB, Hällberg BM, Murrell B, McInerney GM. An alpaca nanobody neutralizes SARS-CoV-2 by blocking receptor interaction. Nat Commun 2020; 11(1): 4420
CrossRef Google scholar
[11]
Huo J, Le Bas A, Ruza RR, Duyvesteyn HME, Mikolajek H, Malinauskas T, Tan TK, Rijal P, Dumoux M, Ward PN, Ren J, Zhou D, Harrison PJ, Weckener M, Clare DK, Vogirala VK, Radecke J, Moynié L, Zhao Y, Gilbert-Jaramillo J, Knight ML, Tree JA, Buttigieg KR, Coombes N, Elmore MJ, Carroll MW, Carrique L, Shah PNM, James W, Townsend AR, Stuart DI, Owens RJ, Naismith JH. Neutralizing nanobodies bind SARS-CoV-2 spike RBD and block interaction with ACE2. Nat Struct Mol Biol 2020; 27(9): 846–854
CrossRef Google scholar
[12]
Wrapp D, De Vlieger D, Corbett KS, Torres GM, Wang N, Van Breedam W, Roose K, van Schie L, Hoffmann M, Pöhlmann S, Graham BS, Callewaert N, Schepens B, Saelens X, McLellan JS. Structural basis for potent neutralization of betacoronaviruses by single-domain camelid antibodies. Cell 2020; 181(5): 1004–1015.e15
CrossRef Google scholar
[13]
Chi X, Liu X, Wang C, Zhang X, Li X, Hou J, Ren L, Jin Q, Wang J, Yang W. Humanized single domain antibodies neutralize SARS-CoV-2 by targeting the spike receptor binding domain. Nat Commun 2020; 11(1): 4528
CrossRef Google scholar
[14]
Li C, Zhan W, Yang Z, Tu C, Hu G, Zhang X, Song W, Du S, Zhu Y, Huang K, Kong Y, Zhang M, Mao Q, Gu X, Zhang Y, Xie Y, Deng Q, Song Y, Chen Z, Lu L, Jiang S, Wu Y, Sun L, Ying T. Broad neutralization of SARS-CoV-2 variants by an inhalable bispecific single-domain antibody. Cell 2022; 185(8): 1389–1401.e18
CrossRef Google scholar
[15]
Planas D, Saunders N, Maes P, Guivel-Benhassine F, Planchais C, Buchrieser J, Bolland WH, Porrot F, Staropoli I, Lemoine F, Pere H, Veyer D, Puech J, Rodary J, Baela G, Dellicour S, Raymenants J, Gorissen S, Geenen C, Vanmechelen B, Wawina-Bokalanga T, Marti-Carrerasi J, Cuypers L, Seve A, Hocqueloux L, Prazuck T, Rey F, Simon-Lorriere E, Bruel T, Mouquet H, Andre E, Schwartz O. Considerable escape of SARS-CoV-2 Omicron to antibody neutralization. Nature 2022; 602(7898): 671–675
CrossRef Google scholar
[16]
Cao YL, Wang J, Jian FC, Xiao TH, Song WL, Yisimayi A, Huang WJ, Li QQ, Wang P, An R, Wang Y, Niu X, Yang SJ, Liang H, Sun HY, Li T, Yu YL, Cui QQ, Liu S, Yang XD, Du S, Zhang ZY, Hao XH, Shao F, Jin RH, Wang XX, Xiao JY, Wang YC, Xie XS. Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies. Nature 2022; 602(7898): 657–663
CrossRef Google scholar
[17]
Cui Z, Liu P, Wang N, Wang L, Fan K, Zhu Q, Wang K, Chen R, Feng R, Jia Z, Yang M, Xu G, Zhu B, Fu W, Chu T, Feng L, Wang Y, Pei X, Yang P, Xie XS, Cao L, Cao Y, Wang X. Structural and functional characterizations of infectivity and immune evasion of SARS-CoV-2 Omicron. Cell 2022; 185(5): 860–871.e13
CrossRef Google scholar
[18]
Su Y, Yuan D, Chen DG, Ng RH, Wang K, Choi J, Li S, Hong S, Zhang R, Xie J, Kornilov SA, Scherler K, Pavlovitch-Bedzyk AJ, Dong S, Lausted C, Lee I, Fallen S, Dai CL, Baloni P, Smith B, Duvvuri VR, Anderson KG, Li J, Yang F, Duncombe CJ, McCulloch DJ, Rostomily C, Troisch P, Zhou J, Mackay S, DeGottardi Q, May DH, Taniguchi R, Gittelman RM, Klinger M, Snyder TM, Roper R, Wojciechowska G, Murray K, Edmark R, Evans S, Jones L, Zhou Y, Rowen L, Liu R, Chour W, Algren HA, Berrington WR, Wallick JA, Cochran RA, Micikas ME, Wrin T, Petropoulos CJ, Cole HR, Fischer TD, Wei W, Hoon DSB, Price ND, Subramanian N, Hill JA, Hadlock J, Magis AT, Ribas A, Lanier LL, Boyd SD, Bluestone JA, Chu H, Hood L, Gottardo R, Greenberg PD, Davis MM, Goldman JD, Heath JR. Multiple early factors anticipate post-acute COVID-19 sequelae. Cell 2022; 185(5): 881–895.e20
CrossRef Google scholar
[19]
Davies NG, Abbott S, Barnard RC, Jarvis CI, Edmunds WJ. Estimated transmissibility and impact of SARS-CoV-2 lineage B. 1.1. 7 in England. Science 2021; 372(6538): eabg3055
CrossRef Google scholar
[20]
Ma Y, Mao Q, Wang Y, Zhang Z, Chen J, Hao A, Rehati P, Wang Y, Wen Y, Lu L, Chen Z, Zhao J, Wu F, Sun L, Huang J. A broadly neutralizing antibody inhibits SARS-CoV-2 variants through a novel mechanism of disrupting spike trimer integrity. Cell Res 2023; 33(12): 975–978
CrossRef Google scholar
[21]
Mahendra A, Sharma M, Rao DN, Peyron I, Planchais C, Dimitrov JD, Kaveri SV, Lacroix-Desmazes S. Antibody-mediated catalysis: induction and therapeutic relevance. Autoimmun Rev 2013; 12(6): 648–652
CrossRef Google scholar
[22]
Xu B, Wang K, Vasylieva N, Zhou H, Xue X, Wang B, Li QX, Hammock BD, Xu T. Development of a nanobody-based ELISA for the detection of the insecticides cyantraniliprole and chlorantraniliprole in soil and the vegetable bok choy. Anal Bioanal Chem 2021; 413(9): 2503–2511
CrossRef Google scholar
[23]
Kim HJ, McCoy MR, Majkova Z, Dechant JE, Gee SJ, Tabares-da Rosa S, González-Sapienza GG, Hammock BD. Isolation of alpaca anti-hapten heavy chain single domain antibodies for development of sensitive immunoassay. Anal Chem 2012; 84(2): 1165–1171
CrossRef Google scholar
[24]
Wang K, Vasylieva N, Wan DB, Eads DA, Yang J, Tretten T, Barnych B, Li J, Li QX, Gee SJ, Hammock BD, Xu T. Quantitative detection of fipronil and fipronil-sulfone in sera of black-tailed prairie dogs and rats after oral exposure to fipronil by camel single-domain antibody-based immunoassays. Anal Chem 2019; 91(2): 1532–1540
CrossRef Google scholar
[25]
Ingram JR, Schmidt FI, Ploegh HL. Exploiting nanobodies’ singular traits. Annu Rev Immunol 2018; 36(1): 695–715
CrossRef Google scholar
[26]
Fan X, Cao D, Kong L, Zhang X. Cryo-EM analysis of the post-fusion structure of the SARS-CoV spike glycoprotein. Nat Commun 2020; 11(1): 3618
CrossRef Google scholar
[27]
Liu A, Huang X, He W, Xue F, Yang Y, Liu J, Chen L, Yuan L, Xu P. pHmScarlet is a pH-sensitive red fluorescent protein to monitor exocytosis docking and fusion steps. Nat Commun 2021; 12(1): 1413
CrossRef Google scholar
[28]
Wu CL, Huang XJ, Cheng J, Zhu DJ, Zhang XZ. High-quality, high-throughput cryo-electron microscopy data collection via beam tilt and astigmatism-free beam-image shift. J Struct Biol 2019; 208(3): 107396
CrossRef Google scholar
[29]
Zheng SQ, Palovcak E, Armache JP, Verba KA, Cheng Y, Agard DA. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat Methods 2017; 14(4): 331–332
CrossRef Google scholar
[30]
Rohou A, Grigorieff N. CTFFIND4: fast and accurate defocus estimation from electron micrographs. J Struct Biol 2015; 192(2): 216–221
CrossRef Google scholar
[31]
Scheres SH. RELION: implementation of a bayesian approach to cryo-EM structure determination. J Struct Biol 2012; 180(3): 519–530
CrossRef Google scholar
[32]
Kucukelbir A, Sigworth FJ, Tagare HD. Quantifying the local resolution of cryo-EM density maps. Nat Methods 2014; 11(1): 63–65
CrossRef Google scholar
[33]
Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Žídek A, Potapenko A, Bridgland A, Meyer C, Kohl SAA, Ballard AJ, Cowie A, Romera-Paredes B, Nikolov S, Jain R, Adler J, Back T, Petersen S, Reiman D, Clancy E, Zielinski M, Steinegger M, Pacholska M, Berghammer T, Bodenstein S, Silver D, Vinyals O, Senior AW, Kavukcuoglu K, Kohli P, Hassabis D. Highly accurate protein structure prediction with AlphaFold. Nature 2021; 596(7873): 583–589
CrossRef Google scholar
[34]
Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE. UCSF Chimera–a visualization system for exploratory research and analysis. J Comput Chem 2004; 25(13): 1605–1612
CrossRef Google scholar
[35]
Emsley P, Lohkamp B, Scott WG, Cowtan K. Features and development of Coot. Acta Crystallogr D Biol Crystallogr 2010; 66(4): 486–501
CrossRef Google scholar
[36]
Adams PD, Afonine PV, Bunkoczi G, Chen VB, Davis IW, Echols N, Headd JJ, Hung LW, Kapral GJ, Grosse-Kunstleve RW, McCoy AJ, Moriarty NW, Oeffner R, Read RJ, Richardson DC, Richardson JS, Terwilliger TC, Zwart PH. PHENIX: a comprehensive python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 2010; 66(Pt 2): 213–221
CrossRef Google scholar
[37]
Chen VB, Arendall WB III, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, Murray LW, Richardson JS, Richardson DC. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D Biol Crystallogr 2010; 66(1): 12–21
CrossRef Google scholar
[38]
Wrobel AG, Benton DJ, Xu P, Roustan C, Martin SR, Rosenthal PB, Skehel JJ, Gamblin SJ. SARS-CoV-2 and bat RaTG13 spike glycoprotein structures inform on virus evolution and furin-cleavage effects. Nat Struct Mol Biol 2020; 27(8): 763–767
CrossRef Google scholar
[39]
Crawford K, Eguia R, Dingens AS, Loes AN, Bloom JD. Protocol and reagents for pseudotyping lentiviral particles with SARS-CoV-2 spike protein for neutralization Assays. Viruses 2020; 12(5): 513
CrossRef Google scholar
[40]
Cui L, Li T, Xue W, Zhang S, Wang H, Liu H, Gu Y, Xia N, Li S. Comprehensive overview of broadly neutralizing antibodies against SARS-CoV-2 variants. Viruses 2024; 16(6): 900
CrossRef Google scholar
[41]
Barnes CO, Jette CA, Abernathy ME, Dam KA, Esswein SR, Gristick HB, Malyutin AG, Sharaf NG, Huey-Tubman KE, Lee YE, Robbiani DF, Nussenzweig MC, West AP Jr, Bjorkman PJ. SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies. Nature 2020; 588(7839): 682–687
CrossRef Google scholar
[42]
Hastie KM, Li H, Bedinger D, Schendel SL, Dennison SM, Li K, Rayaprolu V, Yu X, Mann C, Zandonatti M, Diaz Avalos R, Zyla D, Buck T, Hui S, Shaffer K, Hariharan C, Yin J, Olmedillas E, Enriquez A, Parekh D, Abraha M, Feeney E, Horn GQ, Aldon Y, Ali H, Aracic S, Cobb RR, Federman RS, Fernandez JM, Glanville J, Green R, Grigoryan G, Lujan Hernandez AG, Ho DD, Huang KYA, Ingraham J, Jiang W, Kellam P, Kim C, Kim M, Kim HM, Kong C, Krebs SJ, Lan F, Lang G, Lee S, Leung CL, Liu J, Lu Y, MacCamy A, McGuire AT, Palser AL, Rabbitts TH, Rikhtegaran Tehrani Z, Sajadi MM, Sanders RW, Sato AK, Schweizer L, Seo J, Shen B, Snitselaar JL, Stamatatos L, Tan Y, Tomic MT, van Gils MJ, Youssef S, Yu J, Yuan TZ, Zhang Q, Peters B, Tomaras GD, Germann T, Saphire EO. Defining variant-resistant epitopes targeted by SARS-CoV-2 antibodies: a global consortium study. Science 2021; 374(6566): 472–478
CrossRef Google scholar
[43]
Wentworth AD, Jones LH, Wentworth P Jr, Janda KD, Lerner RA. Antibodies have the intrinsic capacity to destroy antigens. Proc Natl Acad Sci USA 2000; 97(20): 10930–10935
CrossRef Google scholar
[44]
Wang X, Chen X, Tan J, Yue S, Zhou R, Xu Y, Lin Y, Yang Y, Zhou Y, Deng K, Chen Z, Ye L, Zhu Y. 35B5 antibody potently neutralizes SARS-CoV-2 Omicron by disrupting the N-glycan switch via a conserved spike epitope. Cell Host Microbe 2022; 30(6): 887–895.e4
CrossRef Google scholar
[45]
Koenig PA, Das H, Liu HJ, Kummerer BM, Gohr FN, Jenster LM, Schiffelers LDJ, Tesfamariam YM, Uchima M, Wuerth JD, Gatterdam K, Ruetalo N, Christensen MH, Fandrey CI, Normann S, Todtmann JMP, Pritzl S, Hanke L, Boos J, Yuan M, Zhu XY, Schmid-Burgk JL, Kato H, Schindler M, Wilson IA, Geyer M, Ludwig KU, Hallberg BM, Wu NC, Schmidt FI. Structure-guided multivalent nanobodies block SARS-CoV-2 infection and suppress mutational escape. Science 2021; 371(6530): eabe6230
CrossRef Google scholar
[46]
Vincke C, Loris R, Saerens D, Martinez-Rodriguez S, Muyldermans S, Conrath K. General strategy to humanize a camelid single-domain antibody and identification of a universal humanized nanobody scaffold. J Biol Chem 2009; 284(5): 3273–3284
CrossRef Google scholar
[47]
Beirnaert E, Desmyter A, Spinelli S, Lauwereys M, Aarden L, Dreier T, Loris R, Silence K, Pollet C, Cambillau C, de Haard H. Bivalent llama single-domain antibody fragments against tumor necrosis factor have picomolar potencies due to intramolecular interactions. Front Immunol 2017; 8: 867
CrossRef Google scholar
[48]
Holliger P, Hudson PJ. Engineered antibody fragments and the rise of single domains. Nat Biotechnol 2005; 23(9): 1126–1136
CrossRef Google scholar
[49]
Siontorou CG. Nanobodies as novel agents for disease diagnosis and therapy. Int J Nanomedicine 2013; 8: 4215–4227
CrossRef Google scholar
[50]
De Meyer T, Muyldermans S, Depicker A. Nanobody-based products as research and diagnostic tools. Trends Biotechnol 2014; 32(5): 263–270
CrossRef Google scholar
[51]
Muyldermans S. Nanobodies: natural single-domain antibodies. Annu Rev Biochem 2013; 82(1): 775–797
CrossRef Google scholar
[52]
Bracken CJ, Lim SA, Solomon P, Rettko NJ, Nguyen DP, Zha BS, Schaefer K, Byrnes JR, Zhou J, Lui I, Liu J, Pance K; QCRG Structural Biology Consortium; Zhou XX, Leung KK, Wells JA. Bi-paratopic and multivalent VH domains block ACE2 binding and neutralize SARS-CoV-2. Nat Chem Biol 2021; 17(1): 113–121
CrossRef Google scholar
[53]
Schoof M, Faust B, Saunders RA, Sangwan S, Rezelj V, Hoppe N, Boone M, Billesbølle CB, Puchades C, Azumaya CM, Kratochvil HT, Zimanyi M, Deshpande I, Liang J, Dickinson S, Nguyen HC, Chio CM, Merz GE, Thompson MC, Diwanji D, Schaefer K, Anand AA, Dobzinski N, Zha BS, Simoneau CR, Leon K, White KM, Chio US, Gupta M, Jin M, Li F, Liu Y, Zhang K, Bulkley D, Sun M, Smith AM, Rizo AN, Moss F, Brilot AF, Pourmal S, Trenker R, Pospiech T, Gupta S, Barsi-Rhyne B, Belyy V, Barile-Hill AW, Nock S, Liu Y, Krogan NJ, Ralston CY, Swaney DL, García-Sastre A, Ott M, Vignuzzi M; QCRG Structural Biology Consortium; Walter P, Manglik A. An ultrapotent synthetic nanobody neutralizes SARS-CoV-2 by stabilizing inactive Spike. Science 2020; 370(6523): 1473–1479
CrossRef Google scholar
[54]
Xiang YF, Nambulli S, Xiao ZY, Liu H, Sang Z, Duprex WP, Schneidman-Duhovny D, Zhang C, Shi Y. Versatile and multivalent nanobodies efficiently neutralize SARS-CoV-2. Science 2020; 370(6523): 1479–1484
CrossRef Google scholar
[55]
Lu QZ, Zhang ZL, Li HX, Zhong KH, Zhao Q, Wang Z, Wu ZG, Yang DH, Sun S, Yang NA, Zheng MJ, Chen Q, Long C, Guo WH, Yang H, Nie CL, Tong AP. Development of multivalent nanobodies blocking SARS-CoV-2 infection by targeting RBD of spike protein. J Nanobiotechnology 2021; 19(1): 33
CrossRef Google scholar
[56]
Cao Y, Wang J, Jian F, Xiao T, Song W, Yisimayi A, Huang W, Li Q, Wang P, An R, Wang J, Wang Y, Niu X, Yang S, Liang H, Sun H, Li T, Yu Y, Cui Q, Liu S, Yang X, Du S, Zhang Z, Hao X, Shao F, Jin R, Wang X, Xiao J, Wang Y, Xie XS. Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies. Nature 2022; 602(7898): 657–663
CrossRef Google scholar

Acknowledgements

We thank Xiaojun Huang, Boling Zhu, Lihong Chen, Xujing Li, Dong Li, Zhensheng Xie at the Center for Biological Imaging, Core Facilities for protein Science and Yuanyuan Chen, Zhenwei Yang and Bingxue Zhou (IBP, CAS) for technical assistance, Wei Zhang, Dong Qi and Xuefen Zhang at the OptoFem Tech. Limited for the instrument demonstrations of Abberior STEDYCON nanoscopes. This work was supported by grants from National Natural Science Foundation of China (Nos. 92374206, 82225037, 31900871, and 32241027), National Key R&D Program of China (Nos. 2022YFA1303602 and 2021YFA1301402), the Strategic Priority Research Program of CAS (Nos. XDB37030206, XDB29040102, XDB37040101, and XDB29030103), Shanghai Municipal Science and Technology Major Project (No. ZD2021CY001), Basic Research Program Based on Major Scientific Infrastructures of CAS (No. JZHKYPT-2021-05), Key Laboratory of Biomacromolecules of CAS (No. ZGD-2023-05), Beijing Nova Program (No. 20230484239 to Duanfang Cao).

Compliance with ethics guidelines

Conflicts of interest Kai Wang, Duanfang Cao, Lanlan Liu, Xiaoyi Fan, Yihuan Lin, Wenting He, Yunze Zhai, Pingyong Xu, Xiyun Yan, Haikun Wang, Xinzheng Zhang, and Pengyuan Yang declare that no competing interests were involved in this work.
The experimental procedures for use and care of animals were approved by the ethics committee of Institute of Biophysics, Chinese Academy of Sciences. All institutional and national guidelines for the care and use of laboratory animals were followed.

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://doi.org/10.1007/s11684-025-1128-4 and is accessible for authorized users.

RIGHTS & PERMISSIONS

2025 Higher Education Press
AI Summary AI Mindmap
PDF(5286 KB)

Accesses

Citations

Detail

Sections
Recommended

/