Mitochondrial-associated programmed-cell-death patterns for predicting the prognosis of non-small-cell lung cancer

Xueyan Shi, Sichong Han, Guizhen Wang, Guangbiao Zhou

PDF(5460 KB)
PDF(5460 KB)
Front. Med. ›› DOI: 10.1007/s11684-024-1093-3
RESEARCH ARTICLE

Mitochondrial-associated programmed-cell-death patterns for predicting the prognosis of non-small-cell lung cancer

Author information +
History +

Abstract

Mitochondria are the convergence point of multiple pathways that trigger programmed cell death (PCD). Mitochondrial-associated PCD (mtPCD) is involved in the pathogenesis of several diseases. However, the role of mtPCD in the prognostic prediction of cancers including non-small-cell lung cancer (NSCLC) remains to be investigated. Here, 12 mtPCD patterns were analyzed in transcriptomics, genomics, and clinical data collected from 4 datasets containing 977 patients. A risk-score assessment system containing 18 genes was established. We found that NSCLC patients with a high-risk score had a poorer prognosis. A nomogram was constructed by incorporating the risk score with clinical features. The risk score was further associated with clinicopathological information, tumor-mutation frequency, and immunotherapy responses. NSCLC patients with a high risk score had more Treg cells infiltration. However, these patients had higher tumor-mutation burden scores and may be more sensitive to immunotherapy. Moreover, receptor-interacting serine/threonine protein kinase 2 (RIPK2) was selected from mtPCD gene model for validation. We found that RIPK2 exhibited oncogenic function, and its expression level was inversely associated with the overall survival of NSCLC. Taken together, our results indicated the accuracy and practicability of the mtPCD gene model and RIPK2 in predicting the prognosis of NSCLC.

Keywords

mitochondrial associated programmed cell death / NSCLC / prognosis / gene signature

Cite this article

Download citation ▾
Xueyan Shi, Sichong Han, Guizhen Wang, Guangbiao Zhou. Mitochondrial-associated programmed-cell-death patterns for predicting the prognosis of non-small-cell lung cancer. Front. Med., https://doi.org/10.1007/s11684-024-1093-3

References

[1]
The International Agency for Research on Cancer (IARC) of the World Health Organization. Global cancer burden growing, amidst mounting need for services. 2024. Available at the website of WHO
[2]
Nicholson AG, Tsao MS, Beasley MB, Borczuk AC, Brambilla E, Cooper WA, Dacic S, Jain D, Kerr KM, Lantuejoul S, Noguchi M, Papotti M, Rekhtman N, Scagliotti G, van Schil P, Sholl L, Yatabe Y, Yoshida A, Travis WD. The 2021 WHO classification of lung tumors: impact of advances Since 2015. J Thorac Oncol 2022; 17(3): 362–387
CrossRef Google scholar
[3]
Tsuboi M, Herbst RS, John T, Kato T, Majem M, Grohé C, Wang J, Goldman JW, Lu S, Su WC, de Marinis F, Shepherd FA, Lee KH, Le NT, Dechaphunkul A, Kowalski D, Poole L, Bolanos A, Rukazenkov Y, Wu YL. Overall survival with osimertinib in resected EGFR-mutated NSCLC. N Engl J Med 2023; 389(2): 137–147
CrossRef Google scholar
[4]
Garon EB, Rizvi NA, Hui R, Leighl N, Balmanoukian AS, Eder JP, Patnaik A, Aggarwal C, Gubens M, Horn L, Carcereny E, Ahn MJ, Felip E, Lee JS, Hellmann MD, Hamid O, Goldman JW, Soria JC, Dolled-Filhart M, Rutledge RZ, Zhang J, Lunceford JK, Rangwala R, Lubiniecki GM, Roach C, Emancipator K, Gandhi L. Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med 2015; 372(21): 2018–2028
CrossRef Google scholar
[5]
Xiao C, Xiong W, Xu Y, Zou J, Zeng Y, Liu J, Peng Y, Hu C, Wu F. Immunometabolism: a new dimension in immunotherapy resistance. Front Med 2023; 17(4): 585–616
CrossRef Google scholar
[6]
Zhong J, Bai H, Wang Z, Duan J, Zhuang W, Wang D, Wan R, Xu J, Fei K, Ma Z, Zhang X, Wang J. Treatment of advanced non-small cell lung cancer with driver mutations: current applications and future directions. Front Med 2023; 17(1): 18–42
CrossRef Google scholar
[7]
Liao L, Xu H, Zhao Y, Zheng X. Metabolic interventions combined with CTLA-4 and PD-1/PD-L1 blockade for the treatment of tumors: mechanisms and strategies. Front Med 2023; 17(5): 805–822
CrossRef Google scholar
[8]
Hu X, Khatri U, Shen T, Wu J. Progress and challenges in RET-targeted cancer therapy. Front Med 2023; 17(2): 207–219
CrossRef Google scholar
[9]
Garassino MC, Gadgeel S, Speranza G, Felip E, Esteban E, Dómine M, Hochmair MJ, Powell SF, Bischoff HG, Peled N, Grossi F, Jennens RR, Reck M, Hui R, Garon EB, Kurata T, Gray JE, Schwarzenberger P, Jensen E, Pietanza MC, Rodríguez-Abreu D. Pembrolizumab plus pemetrexed and platinum in nonsquamous non-small-cell lung cancer: 5-year outcomes from the phase 3 KEYNOTE-189 study. J Clin Oncol 2023; 41(11): 1992–1998
CrossRef Google scholar
[10]
Novello S, Kowalski DM, Luft A, Gümüş M, Vicente D, Mazières J, Rodríguez-Cid J, Tafreshi A, Cheng Y, Lee KH, Golf A, Sugawara S, Robinson AG, Halmos B, Jensen E, Schwarzenberger P, Pietanza MC, Paz-Ares L. Pembrolizumab plus chemotherapy in squamous non-small-cell lung cancer: 5-year update of the phase III KEYNOTE-407 study. J Clin Oncol 2023; 41(11): 1999–2006
CrossRef Google scholar
[11]
Blaquier JB, Ortiz-Cuaran S, Ricciuti B, Mezquita L, Cardona AF, Recondo G. Tackling osimertinib resistance in EGFR-mutant non-small cell lung cancer. Clin Cancer Res 2023; 29(18): 3579–3591
CrossRef Google scholar
[12]
Passaro A, Jänne PA, Mok T, Peters S. Overcoming therapy resistance in EGFR-mutant lung cancer. Nat Cancer 2021; 2(4): 377–391
CrossRef Google scholar
[13]
Zhang H, Wang Y, Yuan X, Zou Y, Xiong H. Research progress on lung cancer stem cells in epidermal growth factor receptor–tyrosine kinase inhibitor targeted therapy resistance in lung adenocarcinoma. Oncol Transl Med 2024; 10(1): 42–46
CrossRef Google scholar
[14]
Memon D, Schoenfeld AJ, Ye D, Fromm G, Rizvi H, Zhang X, Keddar MR, Mathew D, Yoo KJ, Qiu J, Lihm J, Miriyala J, Sauter JL, Luo J, Chow A, Bhanot UK, McCarthy C, Vanderbilt CM, Liu C, Abu-Akeel M, Plodkowski AJ, McGranahan N, Łuksza M, Greenbaum BD, Merghoub T, Achour I, Barrett JC, Stewart R, Beltrao P, Schreiber TH, Minn AJ, Miller ML, Hellmann MD. Clinical and molecular features of acquired resistance to immunotherapy in non-small cell lung cancer. Cancer Cell 2024; 42(2): 209–224.e9
CrossRef Google scholar
[15]
Newton K, Strasser A, Kayagaki N, Dixit VM. Cell death. Cell 2024; 187(2): 235–256
CrossRef Google scholar
[16]
Peng F, Liao M, Qin R, Zhu S, Peng C, Fu L, Chen Y, Han B. Regulated cell death (RCD) in cancer: key pathways and targeted therapies. Signal Transduct Target Ther 2022; 7(1): 286
CrossRef Google scholar
[17]
Park W, Wei S, Kim BS, Kim B, Bae SJ, Chae YC, Ryu D, Ha KT. Diversity and complexity of cell death: a historical review. Exp Mol Med 2023; 55(8): 1573–1594
CrossRef Google scholar
[18]
Zou Y, Xie J, Zheng S, Liu W, Tang Y, Tian W, Deng X, Wu L, Zhang Y, Wong CW, Tan D, Liu Q, Xie X. Leveraging diverse cell-death patterns to predict the prognosis and drug sensitivity of triple-negative breast cancer patients after surgery. Int J Surg 2022; 107: 106936
CrossRef Google scholar
[19]
Medina CB, Mehrotra P, Arandjelovic S, Perry JSA, Guo Y, Morioka S, Barron B, Walk SF, Ghesquière B, Krupnick AS, Lorenz U, Ravichandran KS. Metabolites released from apoptotic cells act as tissue messengers. Nature 2020; 580(7801): 130–135
CrossRef Google scholar
[20]
Negroni A, Colantoni E, Cucchiara S, Stronati L. Necroptosis in intestinal inflammation and cancer: new concepts and therapeutic perspectives. Biomolecules 2020; 10: 1431
CrossRef Google scholar
[21]
Sun L, Wang H, Wang Z, He S, Chen S, Liao D, Wang L, Yan J, Liu W, Lei X, Wang X. Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell 2012; 148(1–2): 213–227
CrossRef Google scholar
[22]
Shi J, Zhao Y, Wang Y, Gao W, Ding J, Li P, Hu L, Shao F. Inflammatory caspases are innate immune receptors for intracellular LPS. Nature 2014; 514(7521): 187–192
CrossRef Google scholar
[23]
Orning P, Weng D, Starheim K, Ratner D, Best Z, Lee B, Brooks A, Xia S, Wu H, Kelliher MA, Berger SB, Gough PJ, Bertin J, Proulx MM, Goguen JD, Kayagaki N, Fitzgerald KA, Lien E. Pathogen blockade of TAK1 triggers caspase-8-dependent cleavage of gasdermin D and cell death. Science 2018; 362(6418): 1064–1069
CrossRef Google scholar
[24]
Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, Morrison B III, Stockwell BR. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 2012; 149(5): 1060–1072
CrossRef Google scholar
[25]
Stockwell BR, Friedmann Angeli JP, Bayir H, Bush AI, Conrad M, Dixon SJ, Fulda S, Gascón S, Hatzios SK, Kagan VE, Noel K, Jiang X, Linkermann A, Murphy ME, Overholtzer M, Oyagi A, Pagnussat GC, Park J, Ran Q, Rosenfeld CS, Salnikow K, Tang D, Torti FM, Torti SV, Toyokuni S, Woerpel KA, Zhang DD. Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell 2017; 171(2): 273–285
CrossRef Google scholar
[26]
Tsvetkov P, Coy S, Petrova B, Dreishpoon M, Verma A, Abdusamad M, Rossen J, Joesch-Cohen L, Humeidi R, Spangler RD, Eaton JK, Frenkel E, Kocak M, Corsello SM, Lutsenko S, Kanarek N, Santagata S, Golub TR. Copper induces cell death by targeting lipoylated TCA cycle proteins. Science 2022; 375(6586): 1254–1261
CrossRef Google scholar
[27]
Mizushima N, Komatsu M. Autophagy: renovation of cells and tissues. Cell 2011; 147(4): 728–741
CrossRef Google scholar
[28]
Neuenfeldt F, Schumacher JC, Grieshaber-Bouyer R, Habicht J, Schröder-Braunstein J, Gauss A, Merle U, Niesler B, Heineken N, Dalpke A, Gaida MM, Giese T, Meuer S, Samstag Y, Wabnitz G. Inflammation induces pro-NETotic neutrophils via TNFR2 signaling. Cell Rep 2022; 39(3): 110710
CrossRef Google scholar
[29]
Zhou Y, Liu L, Tao S, Yao Y, Wang Y, Wei Q, Shao A, Deng Y. Parthanatos and its associated components: promising therapeutic targets for cancer. Pharmacol Res 2021; 163: 105299
CrossRef Google scholar
[30]
Nakamura H, Tanaka T, Zheng C, Afione SA, Warner BM, Noguchi M, Atsumi T, Chiorini JA. Lysosome-associated membrane protein 3 induces lysosome-dependent cell death by impairing autophagic caspase 8 degradation in the salivary glands of individuals with Sjögren’s disease. Arthritis Rheumatol 2023; 75(9): 1586–1598
CrossRef Google scholar
[31]
Chen F, Kang R, Liu J, Tang D. Mechanisms of alkaliptosis. Front Cell Dev Biol 2023; 11: 1213995
CrossRef Google scholar
[32]
Lee AR, Park CY. Orai1 is an entotic Ca2+ channel for non-apoptotic cell death, entosis in cancer development. Adv Sci (Weinh) 2023; 10(14): 2205913
CrossRef Google scholar
[33]
Holze C, Michaudel C, Mackowiak C, Haas DA, Benda C, Hubel P, Pennemann FL, Schnepf D, Wettmarshausen J, Braun M, Leung DW, Amarasinghe GK, Perocchi F, Staeheli P, Ryffel B, Pichlmair A. Oxeiptosis, a ROS-induced caspase-independent apoptosis-like cell-death pathway. Nat Immunol 2018; 19(2): 130–140
CrossRef Google scholar
[34]
Bock FJ, Tait SWG. Mitochondria as multifaceted regulators of cell death. Nat Rev Mol Cell Biol 2020; 21(2): 85–100
CrossRef Google scholar
[35]
Vringer E, Tait SWG. Mitochondria and cell death-associated inflammation. Cell Death Differ 2023; 30(2): 304–312
CrossRef Google scholar
[36]
Nguyen TT, Wei S, Nguyen TH, Jo Y, Zhang Y, Park W, Gariani K, Oh CM, Kim HH, Ha KT, Park KS, Park R, Lee IK, Shong M, Houtkooper RH, Ryu D. Mitochondria-associated programmed cell death as a therapeutic target for age-related disease. Exp Mol Med 2023; 55(8): 1595–1619
CrossRef Google scholar
[37]
Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized linear models via coordinate descent. J Stat Softw 2010; 33(1): 1–22
CrossRef Google scholar
[38]
Mayakonda A, Lin DC, Assenov Y, Plass C, Koeffler HP. Maftools: efficient and comprehensive analysis of somatic variants in cancer. Genome Res 2018; 28(11): 1747–1756
CrossRef Google scholar
[39]
Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, Feng T, Zhou L, Tang W, Zhan L, Fu X, Liu S, Bo X, Yu G. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation (Camb) 2021; 2(3): 100141
CrossRef Google scholar
[40]
Chen B, Khodadoust MS, Liu CL, Newman AM, Alizadeh AA. Profiling tumor infiltrating immune cells with CIBERSORT. Methods Mol Biol 2018; 1711: 243–259
CrossRef Google scholar
[41]
Zeng D, Wu J, Luo H, Li Y, Xiao J, Peng J, Ye Z, Zhou R, Yu Y, Wang G, Huang N, Wu J, Rong X, Sun L, Sun H, Qiu W, Xue Y, Bin J, Liao Y, Li N, Shi M, Kim KM, Liao W. Tumor microenvironment evaluation promotes precise checkpoint immunotherapy of advanced gastric cancer. J Immunother Cancer 2021; 9(8): e002467
CrossRef Google scholar
[42]
Xie D, Wang Z, Sun B, Qu L, Zeng M, Feng L, Guo M, Wang G, Hao J, Zhou G. High frequency of alternative splicing variants of the oncogene focal adhesion kinase in neuroendocrine tumors of the pancreas and breast. Front Med 2023; 17(5): 907–923
CrossRef Google scholar
[43]
Sun BB, Wang GZ, Han SC, Yang FY, Guo H, Liu J, Liu YT, Zhou GB. Oncogenic functions and therapeutic potentials of targeted inhibition of SMARCAL1 in small cell lung cancer. Cancer Lett 2024; 592: 216929
CrossRef Google scholar
[44]
You J, Wang Y, Chen H, Jin F. RIPK2: a promising target for cancer treatment. Front Pharmacol 2023; 14: 1192970
CrossRef Google scholar
[45]
Chen Y, Lewis W, Diwan A, Cheng EHY, Matkovich SJ, Dorn GW II. Dual autonomous mitochondrial cell death pathways are activated by Nix/BNip3L and induce cardiomyopathy. Proc Natl Acad Sci USA 2010; 107(20): 9035–9042
CrossRef Google scholar
[46]
Winter JM, Yadav T, Rutter J. Stressed to death: Mitochondrial stress responses connect respiration and apoptosis in cancer. Mol Cell 2022; 82(18): 3321–3332
CrossRef Google scholar
[47]
Wu G, Chen M, Ren H, Sha X, He M, Ren K, Qi J, Lin F. AP3S1 is a novel prognostic biomarker and correlated with an immunosuppressive tumor microenvironment in pan-cancer. Front Cell Dev Biol 2022; 10: 930933
CrossRef Google scholar
[48]
Reich N, Hölscher C. Cholecystokinin (CCK): a neuromodulator with therapeutic potential in Alzheimer’s and Parkinson’s disease. Front Neuroendocrinol 2024; 73: 101122
CrossRef Google scholar
[49]
Zilli F, Marques Ramos P, Auf der Maur P, Jehanno C, Sethi A, Coissieux MM, Eichlisberger T, Sauteur L, Rouchon A, Bonapace L, Pinto Couto J, Rad R, Jensen MR, Banfi A, Stadler MB, Bentires-Alj M. The NFIB-ERO1A axis promotes breast cancer metastatic colonization of disseminated tumour cells. EMBO Mol Med 2021; 13(4): e13162
CrossRef Google scholar
[50]
Liu L, Li S, Qu Y, Bai H, Pan X, Wang J, Wang Z, Duan J, Zhong J, Wan R, Fei K, Xu J, Yuan L, Wang C, Xue P, Zhang X, Ma Z, Wang J. Ablation of ERO1A induces lethal endoplasmic reticulum stress responses and immunogenic cell death to activate anti-tumor immunity. Cell Rep Med 2023; 4(10): 101206
CrossRef Google scholar
[51]
Shi X, Li T, Liu Y, Yin L, Xiao L, Fu L, Zhu Y, Chen H, Wang K, Xiao X, Zhang H, Tan S, Tan S. HSF1 protects sepsis-induced acute lung injury by inhibiting NLRP3 inflammasome activation. Front Immunol 2022; 13: 781003
CrossRef Google scholar
[52]
Koh K, Ishiura H, Shimazaki H, Tsutsumiuchi M, Ichinose Y, Nan H, Hamada S, Ohtsuka T, Tsuji S, Takiyama Y. VPS13D-related disorders presenting as a pure and complicated form of hereditary spastic paraplegia. Mol Genet Genomic Med 2020; 8(3): e1108
CrossRef Google scholar
[53]
Xu R, Song J, Ruze R, Chen Y, Yin X, Wang C, Zhao Y. SQLE promotes pancreatic cancer growth by attenuating ER stress and activating lipid rafts-regulated Src/PI3K/Akt signaling pathway. Cell Death Dis 2023; 14(8): 497
CrossRef Google scholar
[54]
Chen J, Liu F, Wu J, Yang Y, He J, Wu F, Yang K, Li J, Jiang Z, Jiang Z. Effect of STK3 on proliferation and apoptosis of pancreatic cancer cells via PI3K/AKT/mTOR pathway. Cell Signal 2023; 106: 110642
CrossRef Google scholar
[55]
Anastasiadou E, Messina E, Sanavia T, Labruna V, Ceccarelli S, Megiorni F, Gerini G, Pontecorvi P, Camero S, Perniola G, Venneri MA, Trivedi P, Lenzi A, Marchese C. Calcineurin gamma catalytic subunit PPP3CC inhibition by miR-200c-3p affects apoptosis in epithelial ovarian cancer. Genes (Basel) 2021; 12(9): 1400
CrossRef Google scholar
[56]
Fang Y, Liu J, Zhang Q, She C, Zheng R, Zhang R, Chen Z, Chen C, Wu J. Overexpressed VDAC1 in breast cancer as a novel prognostic biomarker and correlates with immune infiltrates. World J Surg Oncol 2022; 20(1): 211
CrossRef Google scholar
[57]
Lahiri A, Maji A, Potdar PD, Singh N, Parikh P, Bisht B, Mukherjee A, Paul MK. Lung cancer immunotherapy: progress, pitfalls, and promises. Mol Cancer 2023; 22(1): 40
CrossRef Google scholar
[58]
Sun L, Su Y, Jiao A, Wang X, Zhang B. T cells in health and disease. Signal Transduct Target Ther 2023; 8(1): 235
CrossRef Google scholar
[59]
Myers JA, Miller JS. Exploring the NK cell platform for cancer immunotherapy. Nat Rev Clin Oncol 2021; 18(2): 85–100
CrossRef Google scholar
[60]
Wang C, Zheng X, Zhang J, Jiang X, Wang J, Li Y, Li X, Shen G, Peng J, Zheng P, Gu Y, Chen J, Lin M, Deng C, Gao H, Lu Z, Zhao Y, Luo M. CD300ld on neutrophils is required for tumour-driven immune suppression. Nature 2023; 621(7980): 830–839
CrossRef Google scholar
[61]
Tay C, Tanaka A, Sakaguchi S. Tumor-infiltrating regulatory T cells as targets of cancer immunotherapy. Cancer Cell 2023; 41(3): 450–465
CrossRef Google scholar
[62]
Patel RB, Hernandez R, Carlson P, Grudzinski J, Bates AM, Jagodinsky JC, Erbe A, Marsh IR, Arthur I, Aluicio-Sarduy E, Sriramaneni RN, Jin WJ, Massey C, Rakhmilevich AL, Vail D, Engle JW, Le T, Kim KM, Bednarz B, Sondel PM, Weichert J, Morris ZS. Low-dose targeted radionuclide therapy renders immunologically cold tumors responsive to immune checkpoint blockade. Sci Transl Med 2021; 13(602): eabb3631
CrossRef Google scholar
[63]
Samstein RM, Lee CH, Shoushtari AN, Hellmann MD, Shen R, Janjigian YY, Barron DA, Zehir A, Jordan EJ, Omuro A, Kaley TJ, Kendall SM, Motzer RJ, Hakimi AA, Voss MH, Russo P, Rosenberg J, Iyer G, Bochner BH, Bajorin DF, Al-Ahmadie HA, Chaft JE, Rudin CM, Riely GJ, Baxi S, Ho AL, Wong RJ, Pfister DG, Wolchok JD, Barker CA, Gutin PH, Brennan CW, Tabar V, Mellinghoff IK, DeAngelis LM, Ariyan CE, Lee N, Tap WD, Gounder MM, D’Angelo SP, Saltz L, Stadler ZK, Scher HI, Baselga J, Razavi P, Klebanoff CA, Yaeger R, Segal NH, Ku GY, DeMatteo RP, Ladanyi M, Rizvi NA, Berger MF, Riaz N, Solit DB, Chan TA, Morris LGT. Tumor mutational load predicts survival after immunotherapy across multiple cancer types. Nat Genet 2019; 51(2): 202–206
CrossRef Google scholar
[64]
Han Q, Ma Y, Wang H, Dai Y, Chen C, Liu Y, Jing L, Sun X. Resibufogenin suppresses colorectal cancer growth and metastasis through RIP3-mediated necroptosis. J Transl Med 2018; 16(1): 201
CrossRef Google scholar
[65]
Wang F, Liu W, Ning J, Wang J, Lang Y, Jin X, Zhu K, Wang X, Li X, Yang F, Ma J, Xu S. Simvastatin suppresses proliferation and migration in non-small cell lung cancer via pyroptosis. Int J Biol Sci 2018; 14(4): 406–417
CrossRef Google scholar
[66]
Greenshields AL, Shepherd TG, Hoskin DW. Contribution of reactive oxygen species to ovarian cancer cell growth arrest and killing by the anti-malarial drug artesunate. Mol Carcinog 2017; 56(1): 75–93
CrossRef Google scholar
[67]
Lu Y, Pan Q, Gao W, Pu Y, He B. Reversal of cisplatin chemotherapy resistance by glutathione-resistant copper-based nanomedicine via cuproptosis. J Mater Chem B Mater Biol Med 2022; 10(33): 6296–6306
CrossRef Google scholar
[68]
Deng J, Zhou M, Liao T, Kuang W, Xia H, Yin Z, Tan Q, Li Y, Song S, Zhou E, Jin Y. Targeting cancer cell ferroptosis to reverse immune checkpoint inhibitor therapy resistance. Front Cell Dev Biol 2022; 10: 818453
CrossRef Google scholar

Acknowledgements

This work was supported by the National Key Research and Development Program of China (Nos. 2023YFC3503205 and 2022YFA1103900), the CAMS Innovation Fund for Medical Sciences (CIFMS; No. 2022-I2M-1-009), the National Natural Science Foundation of China (Nos. 82372944, 82073092 and 82273076), the Science and Technology Research Project of Henan Province (No. 222102310636), the Henan Provincial Medical Science and Technology Research Project (No. LHGJ20210183), and the Scientific Research Fund Project of the Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital.

Compliance with ethics guidelines

Conflicts of interest Xueyan Shi, Sichong Han, and Guizhen Wang declare that they have no conflict of interest. Guangbiao Zhou is the Executive Deputy Editor-in-Chief of Frontiers of Medicine, who was excluded from the peer-review process and all editorial decisions related to the acceptance and publication of this article. Peer-review was handled independently by the other editors to minimise bias.
The study was approved by the Ethics Committee of Cancer Hospital, Chinese Academy of Medical Sciences and the study was performed in accordance with the ethical standards as laid down in the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards. Informed consent was obtained from all patients for being included in the study. All institutional and national guidelines for the care and use of laboratory animals were followed.

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(5460 KB)

Accesses

Citations

Detail

Sections
Recommended

/