Mitochondrial-associated programmed-cell-death patterns for predicting the prognosis of non-small-cell lung cancer

Xueyan Shi , Sichong Han , Guizhen Wang , Guangbiao Zhou

Front. Med. ›› 2025, Vol. 19 ›› Issue (1) : 101 -120.

PDF (5462KB)
Front. Med. ›› 2025, Vol. 19 ›› Issue (1) : 101 -120. DOI: 10.1007/s11684-024-1093-3
RESEARCH ARTICLE

Mitochondrial-associated programmed-cell-death patterns for predicting the prognosis of non-small-cell lung cancer

Author information +
History +
PDF (5462KB)

Abstract

Mitochondria are the convergence point of multiple pathways that trigger programmed cell death (PCD). Mitochondrial-associated PCD (mtPCD) is involved in the pathogenesis of several diseases. However, the role of mtPCD in the prognostic prediction of cancers including non-small-cell lung cancer (NSCLC) remains to be investigated. Here, 12 mtPCD patterns were analyzed in transcriptomics, genomics, and clinical data collected from 4 datasets containing 977 patients. A risk-score assessment system containing 18 genes was established. We found that NSCLC patients with a high-risk score had a poorer prognosis. A nomogram was constructed by incorporating the risk score with clinical features. The risk score was further associated with clinicopathological information, tumor-mutation frequency, and immunotherapy responses. NSCLC patients with a high risk score had more Treg cells infiltration. However, these patients had higher tumor-mutation burden scores and may be more sensitive to immunotherapy. Moreover, receptor-interacting serine/threonine protein kinase 2 (RIPK2) was selected from mtPCD gene model for validation. We found that RIPK2 exhibited oncogenic function, and its expression level was inversely associated with the overall survival of NSCLC. Taken together, our results indicated the accuracy and practicability of the mtPCD gene model and RIPK2 in predicting the prognosis of NSCLC.

Keywords

mitochondrial associated programmed cell death / NSCLC / prognosis / gene signature

Cite this article

Download citation ▾
Xueyan Shi, Sichong Han, Guizhen Wang, Guangbiao Zhou. Mitochondrial-associated programmed-cell-death patterns for predicting the prognosis of non-small-cell lung cancer. Front. Med., 2025, 19(1): 101-120 DOI:10.1007/s11684-024-1093-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

The International Agency for Research on Cancer (IARC) of the World Health Organization. Global cancer burden growing, amidst mounting need for services. 2024. Available at the website of WHO

[2]

Nicholson AG, Tsao MS, Beasley MB, Borczuk AC, Brambilla E, Cooper WA, Dacic S, Jain D, Kerr KM, Lantuejoul S, Noguchi M, Papotti M, Rekhtman N, Scagliotti G, van Schil P, Sholl L, Yatabe Y, Yoshida A, Travis WD. The 2021 WHO classification of lung tumors: impact of advances Since 2015. J Thorac Oncol 2022; 17(3): 362–387

[3]

Tsuboi M, Herbst RS, John T, Kato T, Majem M, Grohé C, Wang J, Goldman JW, Lu S, Su WC, de Marinis F, Shepherd FA, Lee KH, Le NT, Dechaphunkul A, Kowalski D, Poole L, Bolanos A, Rukazenkov Y, Wu YL. Overall survival with osimertinib in resected EGFR-mutated NSCLC. N Engl J Med 2023; 389(2): 137–147

[4]

Garon EB, Rizvi NA, Hui R, Leighl N, Balmanoukian AS, Eder JP, Patnaik A, Aggarwal C, Gubens M, Horn L, Carcereny E, Ahn MJ, Felip E, Lee JS, Hellmann MD, Hamid O, Goldman JW, Soria JC, Dolled-Filhart M, Rutledge RZ, Zhang J, Lunceford JK, Rangwala R, Lubiniecki GM, Roach C, Emancipator K, Gandhi L. Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med 2015; 372(21): 2018–2028

[5]

Xiao C, Xiong W, Xu Y, Zou J, Zeng Y, Liu J, Peng Y, Hu C, Wu F. Immunometabolism: a new dimension in immunotherapy resistance. Front Med 2023; 17(4): 585–616

[6]

Zhong J, Bai H, Wang Z, Duan J, Zhuang W, Wang D, Wan R, Xu J, Fei K, Ma Z, Zhang X, Wang J. Treatment of advanced non-small cell lung cancer with driver mutations: current applications and future directions. Front Med 2023; 17(1): 18–42

[7]

Liao L, Xu H, Zhao Y, Zheng X. Metabolic interventions combined with CTLA-4 and PD-1/PD-L1 blockade for the treatment of tumors: mechanisms and strategies. Front Med 2023; 17(5): 805–822

[8]

Hu X, Khatri U, Shen T, Wu J. Progress and challenges in RET-targeted cancer therapy. Front Med 2023; 17(2): 207–219

[9]

Garassino MC, Gadgeel S, Speranza G, Felip E, Esteban E, Dómine M, Hochmair MJ, Powell SF, Bischoff HG, Peled N, Grossi F, Jennens RR, Reck M, Hui R, Garon EB, Kurata T, Gray JE, Schwarzenberger P, Jensen E, Pietanza MC, Rodríguez-Abreu D. Pembrolizumab plus pemetrexed and platinum in nonsquamous non-small-cell lung cancer: 5-year outcomes from the phase 3 KEYNOTE-189 study. J Clin Oncol 2023; 41(11): 1992–1998

[10]

Novello S, Kowalski DM, Luft A, Gümüş M, Vicente D, Mazières J, Rodríguez-Cid J, Tafreshi A, Cheng Y, Lee KH, Golf A, Sugawara S, Robinson AG, Halmos B, Jensen E, Schwarzenberger P, Pietanza MC, Paz-Ares L. Pembrolizumab plus chemotherapy in squamous non-small-cell lung cancer: 5-year update of the phase III KEYNOTE-407 study. J Clin Oncol 2023; 41(11): 1999–2006

[11]

Blaquier JB, Ortiz-Cuaran S, Ricciuti B, Mezquita L, Cardona AF, Recondo G. Tackling osimertinib resistance in EGFR-mutant non-small cell lung cancer. Clin Cancer Res 2023; 29(18): 3579–3591

[12]

Passaro A, Jänne PA, Mok T, Peters S. Overcoming therapy resistance in EGFR-mutant lung cancer. Nat Cancer 2021; 2(4): 377–391

[13]

Zhang H, Wang Y, Yuan X, Zou Y, Xiong H. Research progress on lung cancer stem cells in epidermal growth factor receptor–tyrosine kinase inhibitor targeted therapy resistance in lung adenocarcinoma. Oncol Transl Med 2024; 10(1): 42–46

[14]

Memon D, Schoenfeld AJ, Ye D, Fromm G, Rizvi H, Zhang X, Keddar MR, Mathew D, Yoo KJ, Qiu J, Lihm J, Miriyala J, Sauter JL, Luo J, Chow A, Bhanot UK, McCarthy C, Vanderbilt CM, Liu C, Abu-Akeel M, Plodkowski AJ, McGranahan N, Łuksza M, Greenbaum BD, Merghoub T, Achour I, Barrett JC, Stewart R, Beltrao P, Schreiber TH, Minn AJ, Miller ML, Hellmann MD. Clinical and molecular features of acquired resistance to immunotherapy in non-small cell lung cancer. Cancer Cell 2024; 42(2): 209–224.e9

[15]

Newton K, Strasser A, Kayagaki N, Dixit VM. Cell death. Cell 2024; 187(2): 235–256

[16]

Peng F, Liao M, Qin R, Zhu S, Peng C, Fu L, Chen Y, Han B. Regulated cell death (RCD) in cancer: key pathways and targeted therapies. Signal Transduct Target Ther 2022; 7(1): 286

[17]

Park W, Wei S, Kim BS, Kim B, Bae SJ, Chae YC, Ryu D, Ha KT. Diversity and complexity of cell death: a historical review. Exp Mol Med 2023; 55(8): 1573–1594

[18]

Zou Y, Xie J, Zheng S, Liu W, Tang Y, Tian W, Deng X, Wu L, Zhang Y, Wong CW, Tan D, Liu Q, Xie X. Leveraging diverse cell-death patterns to predict the prognosis and drug sensitivity of triple-negative breast cancer patients after surgery. Int J Surg 2022; 107: 106936

[19]

Medina CB, Mehrotra P, Arandjelovic S, Perry JSA, Guo Y, Morioka S, Barron B, Walk SF, Ghesquière B, Krupnick AS, Lorenz U, Ravichandran KS. Metabolites released from apoptotic cells act as tissue messengers. Nature 2020; 580(7801): 130–135

[20]

Negroni A, Colantoni E, Cucchiara S, Stronati L. Necroptosis in intestinal inflammation and cancer: new concepts and therapeutic perspectives. Biomolecules 2020; 10: 1431

[21]

Sun L, Wang H, Wang Z, He S, Chen S, Liao D, Wang L, Yan J, Liu W, Lei X, Wang X. Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell 2012; 148(1–2): 213–227

[22]

Shi J, Zhao Y, Wang Y, Gao W, Ding J, Li P, Hu L, Shao F. Inflammatory caspases are innate immune receptors for intracellular LPS. Nature 2014; 514(7521): 187–192

[23]

Orning P, Weng D, Starheim K, Ratner D, Best Z, Lee B, Brooks A, Xia S, Wu H, Kelliher MA, Berger SB, Gough PJ, Bertin J, Proulx MM, Goguen JD, Kayagaki N, Fitzgerald KA, Lien E. Pathogen blockade of TAK1 triggers caspase-8-dependent cleavage of gasdermin D and cell death. Science 2018; 362(6418): 1064–1069

[24]

Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, Morrison B III, Stockwell BR. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 2012; 149(5): 1060–1072

[25]

Stockwell BR, Friedmann Angeli JP, Bayir H, Bush AI, Conrad M, Dixon SJ, Fulda S, Gascón S, Hatzios SK, Kagan VE, Noel K, Jiang X, Linkermann A, Murphy ME, Overholtzer M, Oyagi A, Pagnussat GC, Park J, Ran Q, Rosenfeld CS, Salnikow K, Tang D, Torti FM, Torti SV, Toyokuni S, Woerpel KA, Zhang DD. Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell 2017; 171(2): 273–285

[26]

Tsvetkov P, Coy S, Petrova B, Dreishpoon M, Verma A, Abdusamad M, Rossen J, Joesch-Cohen L, Humeidi R, Spangler RD, Eaton JK, Frenkel E, Kocak M, Corsello SM, Lutsenko S, Kanarek N, Santagata S, Golub TR. Copper induces cell death by targeting lipoylated TCA cycle proteins. Science 2022; 375(6586): 1254–1261

[27]

Mizushima N, Komatsu M. Autophagy: renovation of cells and tissues. Cell 2011; 147(4): 728–741

[28]

Neuenfeldt F, Schumacher JC, Grieshaber-Bouyer R, Habicht J, Schröder-Braunstein J, Gauss A, Merle U, Niesler B, Heineken N, Dalpke A, Gaida MM, Giese T, Meuer S, Samstag Y, Wabnitz G. Inflammation induces pro-NETotic neutrophils via TNFR2 signaling. Cell Rep 2022; 39(3): 110710

[29]

Zhou Y, Liu L, Tao S, Yao Y, Wang Y, Wei Q, Shao A, Deng Y. Parthanatos and its associated components: promising therapeutic targets for cancer. Pharmacol Res 2021; 163: 105299

[30]

Nakamura H, Tanaka T, Zheng C, Afione SA, Warner BM, Noguchi M, Atsumi T, Chiorini JA. Lysosome-associated membrane protein 3 induces lysosome-dependent cell death by impairing autophagic caspase 8 degradation in the salivary glands of individuals with Sjögren’s disease. Arthritis Rheumatol 2023; 75(9): 1586–1598

[31]

Chen F, Kang R, Liu J, Tang D. Mechanisms of alkaliptosis. Front Cell Dev Biol 2023; 11: 1213995

[32]

Lee AR, Park CY. Orai1 is an entotic Ca2+ channel for non-apoptotic cell death, entosis in cancer development. Adv Sci (Weinh) 2023; 10(14): 2205913

[33]

Holze C, Michaudel C, Mackowiak C, Haas DA, Benda C, Hubel P, Pennemann FL, Schnepf D, Wettmarshausen J, Braun M, Leung DW, Amarasinghe GK, Perocchi F, Staeheli P, Ryffel B, Pichlmair A. Oxeiptosis, a ROS-induced caspase-independent apoptosis-like cell-death pathway. Nat Immunol 2018; 19(2): 130–140

[34]

Bock FJ, Tait SWG. Mitochondria as multifaceted regulators of cell death. Nat Rev Mol Cell Biol 2020; 21(2): 85–100

[35]

Vringer E, Tait SWG. Mitochondria and cell death-associated inflammation. Cell Death Differ 2023; 30(2): 304–312

[36]

Nguyen TT, Wei S, Nguyen TH, Jo Y, Zhang Y, Park W, Gariani K, Oh CM, Kim HH, Ha KT, Park KS, Park R, Lee IK, Shong M, Houtkooper RH, Ryu D. Mitochondria-associated programmed cell death as a therapeutic target for age-related disease. Exp Mol Med 2023; 55(8): 1595–1619

[37]

Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized linear models via coordinate descent. J Stat Softw 2010; 33(1): 1–22

[38]

Mayakonda A, Lin DC, Assenov Y, Plass C, Koeffler HP. Maftools: efficient and comprehensive analysis of somatic variants in cancer. Genome Res 2018; 28(11): 1747–1756

[39]

Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, Feng T, Zhou L, Tang W, Zhan L, Fu X, Liu S, Bo X, Yu G. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation (Camb) 2021; 2(3): 100141

[40]

Chen B, Khodadoust MS, Liu CL, Newman AM, Alizadeh AA. Profiling tumor infiltrating immune cells with CIBERSORT. Methods Mol Biol 2018; 1711: 243–259

[41]

Zeng D, Wu J, Luo H, Li Y, Xiao J, Peng J, Ye Z, Zhou R, Yu Y, Wang G, Huang N, Wu J, Rong X, Sun L, Sun H, Qiu W, Xue Y, Bin J, Liao Y, Li N, Shi M, Kim KM, Liao W. Tumor microenvironment evaluation promotes precise checkpoint immunotherapy of advanced gastric cancer. J Immunother Cancer 2021; 9(8): e002467

[42]

Xie D, Wang Z, Sun B, Qu L, Zeng M, Feng L, Guo M, Wang G, Hao J, Zhou G. High frequency of alternative splicing variants of the oncogene focal adhesion kinase in neuroendocrine tumors of the pancreas and breast. Front Med 2023; 17(5): 907–923

[43]

Sun BB, Wang GZ, Han SC, Yang FY, Guo H, Liu J, Liu YT, Zhou GB. Oncogenic functions and therapeutic potentials of targeted inhibition of SMARCAL1 in small cell lung cancer. Cancer Lett 2024; 592: 216929

[44]

You J, Wang Y, Chen H, Jin F. RIPK2: a promising target for cancer treatment. Front Pharmacol 2023; 14: 1192970

[45]

Chen Y, Lewis W, Diwan A, Cheng EHY, Matkovich SJ, Dorn GW II. Dual autonomous mitochondrial cell death pathways are activated by Nix/BNip3L and induce cardiomyopathy. Proc Natl Acad Sci USA 2010; 107(20): 9035–9042

[46]

Winter JM, Yadav T, Rutter J. Stressed to death: Mitochondrial stress responses connect respiration and apoptosis in cancer. Mol Cell 2022; 82(18): 3321–3332

[47]

Wu G, Chen M, Ren H, Sha X, He M, Ren K, Qi J, Lin F. AP3S1 is a novel prognostic biomarker and correlated with an immunosuppressive tumor microenvironment in pan-cancer. Front Cell Dev Biol 2022; 10: 930933

[48]

Reich N, Hölscher C. Cholecystokinin (CCK): a neuromodulator with therapeutic potential in Alzheimer’s and Parkinson’s disease. Front Neuroendocrinol 2024; 73: 101122

[49]

Zilli F, Marques Ramos P, Auf der Maur P, Jehanno C, Sethi A, Coissieux MM, Eichlisberger T, Sauteur L, Rouchon A, Bonapace L, Pinto Couto J, Rad R, Jensen MR, Banfi A, Stadler MB, Bentires-Alj M. The NFIB-ERO1A axis promotes breast cancer metastatic colonization of disseminated tumour cells. EMBO Mol Med 2021; 13(4): e13162

[50]

Liu L, Li S, Qu Y, Bai H, Pan X, Wang J, Wang Z, Duan J, Zhong J, Wan R, Fei K, Xu J, Yuan L, Wang C, Xue P, Zhang X, Ma Z, Wang J. Ablation of ERO1A induces lethal endoplasmic reticulum stress responses and immunogenic cell death to activate anti-tumor immunity. Cell Rep Med 2023; 4(10): 101206

[51]

Shi X, Li T, Liu Y, Yin L, Xiao L, Fu L, Zhu Y, Chen H, Wang K, Xiao X, Zhang H, Tan S, Tan S. HSF1 protects sepsis-induced acute lung injury by inhibiting NLRP3 inflammasome activation. Front Immunol 2022; 13: 781003

[52]

Koh K, Ishiura H, Shimazaki H, Tsutsumiuchi M, Ichinose Y, Nan H, Hamada S, Ohtsuka T, Tsuji S, Takiyama Y. VPS13D-related disorders presenting as a pure and complicated form of hereditary spastic paraplegia. Mol Genet Genomic Med 2020; 8(3): e1108

[53]

Xu R, Song J, Ruze R, Chen Y, Yin X, Wang C, Zhao Y. SQLE promotes pancreatic cancer growth by attenuating ER stress and activating lipid rafts-regulated Src/PI3K/Akt signaling pathway. Cell Death Dis 2023; 14(8): 497

[54]

Chen J, Liu F, Wu J, Yang Y, He J, Wu F, Yang K, Li J, Jiang Z, Jiang Z. Effect of STK3 on proliferation and apoptosis of pancreatic cancer cells via PI3K/AKT/mTOR pathway. Cell Signal 2023; 106: 110642

[55]

Anastasiadou E, Messina E, Sanavia T, Labruna V, Ceccarelli S, Megiorni F, Gerini G, Pontecorvi P, Camero S, Perniola G, Venneri MA, Trivedi P, Lenzi A, Marchese C. Calcineurin gamma catalytic subunit PPP3CC inhibition by miR-200c-3p affects apoptosis in epithelial ovarian cancer. Genes (Basel) 2021; 12(9): 1400

[56]

Fang Y, Liu J, Zhang Q, She C, Zheng R, Zhang R, Chen Z, Chen C, Wu J. Overexpressed VDAC1 in breast cancer as a novel prognostic biomarker and correlates with immune infiltrates. World J Surg Oncol 2022; 20(1): 211

[57]

Lahiri A, Maji A, Potdar PD, Singh N, Parikh P, Bisht B, Mukherjee A, Paul MK. Lung cancer immunotherapy: progress, pitfalls, and promises. Mol Cancer 2023; 22(1): 40

[58]

Sun L, Su Y, Jiao A, Wang X, Zhang B. T cells in health and disease. Signal Transduct Target Ther 2023; 8(1): 235

[59]

Myers JA, Miller JS. Exploring the NK cell platform for cancer immunotherapy. Nat Rev Clin Oncol 2021; 18(2): 85–100

[60]

Wang C, Zheng X, Zhang J, Jiang X, Wang J, Li Y, Li X, Shen G, Peng J, Zheng P, Gu Y, Chen J, Lin M, Deng C, Gao H, Lu Z, Zhao Y, Luo M. CD300ld on neutrophils is required for tumour-driven immune suppression. Nature 2023; 621(7980): 830–839

[61]

Tay C, Tanaka A, Sakaguchi S. Tumor-infiltrating regulatory T cells as targets of cancer immunotherapy. Cancer Cell 2023; 41(3): 450–465

[62]

Patel RB, Hernandez R, Carlson P, Grudzinski J, Bates AM, Jagodinsky JC, Erbe A, Marsh IR, Arthur I, Aluicio-Sarduy E, Sriramaneni RN, Jin WJ, Massey C, Rakhmilevich AL, Vail D, Engle JW, Le T, Kim KM, Bednarz B, Sondel PM, Weichert J, Morris ZS. Low-dose targeted radionuclide therapy renders immunologically cold tumors responsive to immune checkpoint blockade. Sci Transl Med 2021; 13(602): eabb3631

[63]

Samstein RM, Lee CH, Shoushtari AN, Hellmann MD, Shen R, Janjigian YY, Barron DA, Zehir A, Jordan EJ, Omuro A, Kaley TJ, Kendall SM, Motzer RJ, Hakimi AA, Voss MH, Russo P, Rosenberg J, Iyer G, Bochner BH, Bajorin DF, Al-Ahmadie HA, Chaft JE, Rudin CM, Riely GJ, Baxi S, Ho AL, Wong RJ, Pfister DG, Wolchok JD, Barker CA, Gutin PH, Brennan CW, Tabar V, Mellinghoff IK, DeAngelis LM, Ariyan CE, Lee N, Tap WD, Gounder MM, D’Angelo SP, Saltz L, Stadler ZK, Scher HI, Baselga J, Razavi P, Klebanoff CA, Yaeger R, Segal NH, Ku GY, DeMatteo RP, Ladanyi M, Rizvi NA, Berger MF, Riaz N, Solit DB, Chan TA, Morris LGT. Tumor mutational load predicts survival after immunotherapy across multiple cancer types. Nat Genet 2019; 51(2): 202–206

[64]

Han Q, Ma Y, Wang H, Dai Y, Chen C, Liu Y, Jing L, Sun X. Resibufogenin suppresses colorectal cancer growth and metastasis through RIP3-mediated necroptosis. J Transl Med 2018; 16(1): 201

[65]

Wang F, Liu W, Ning J, Wang J, Lang Y, Jin X, Zhu K, Wang X, Li X, Yang F, Ma J, Xu S. Simvastatin suppresses proliferation and migration in non-small cell lung cancer via pyroptosis. Int J Biol Sci 2018; 14(4): 406–417

[66]

Greenshields AL, Shepherd TG, Hoskin DW. Contribution of reactive oxygen species to ovarian cancer cell growth arrest and killing by the anti-malarial drug artesunate. Mol Carcinog 2017; 56(1): 75–93

[67]

Lu Y, Pan Q, Gao W, Pu Y, He B. Reversal of cisplatin chemotherapy resistance by glutathione-resistant copper-based nanomedicine via cuproptosis. J Mater Chem B Mater Biol Med 2022; 10(33): 6296–6306

[68]

Deng J, Zhou M, Liao T, Kuang W, Xia H, Yin Z, Tan Q, Li Y, Song S, Zhou E, Jin Y. Targeting cancer cell ferroptosis to reverse immune checkpoint inhibitor therapy resistance. Front Cell Dev Biol 2022; 10: 818453

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (5462KB)

1106

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/