Atypical pituitary hormone–target tissue axis

Chao Xu, Zhao He, Yongfeng Song, Shanshan Shao, Guang Yang, Jiajun Zhao

PDF(3266 KB)
PDF(3266 KB)
Front. Med. ›› 2023, Vol. 17 ›› Issue (1) : 1-17. DOI: 10.1007/s11684-022-0973-7
REVIEW
REVIEW

Atypical pituitary hormone–target tissue axis

Author information +
History +

Abstract

A long-held belief is that pituitary hormones bind to their cognate receptors in classical target glands to actuate their manifold functions. However, a number of studies have shown that multiple types of pituitary hormone receptors are widely expressed in non-classical target organs. Each pituitary gland-derived hormone exhibits a wide range of nonconventional biological effects in these non-classical target organs. Herein, the extra biological functions of pituitary hormones, thyroid-stimulating hormone, follicle-stimulating hormone, luteinizing hormone, adrenocorticotrophic hormone, and prolactin when they act on non-classical organs were summarized, defined by the novel concept of an “atypical pituitary hormone–target tissue axis.” This novel proposal explains the pathomechanisms of abnormal glucose and lipid metabolism, obesity, hypertension, fatty liver, and atherosclerosis while offering a more comprehensive and systematic insights into the coordinated regulation of environmental factors, genetic factors, and neuroendocrine hormones on human biological functions. The continued exploration of the physiology of the “atypical pituitary hormone–target tissue axis” could enable the identification of novel therapeutic targets for metabolic diseases.

Keywords

thyroid-stimulating hormone / follicle-stimulating hormone / luteinizing hormone / adrenocorticotrophic hormone / prolactin

Cite this article

Download citation ▾
Chao Xu, Zhao He, Yongfeng Song, Shanshan Shao, Guang Yang, Jiajun Zhao. Atypical pituitary hormone–target tissue axis. Front. Med., 2023, 17(1): 1‒17 https://doi.org/10.1007/s11684-022-0973-7

References

[1]
Szkudlinski MW, Fremont V, Ronin C, Weintraub BD. Thyroid-stimulating hormone and thyroid-stimulating hormone receptor structure-function relationships. Physiol Rev 2002; 82(2): 473–502
CrossRef Pubmed Google scholar
[2]
Ulloa-Aguirre A, Timossi C. Structure-function relationship of follicle-stimulating hormone and its receptor. Hum Reprod Update 1998; 4(3): 260–283
CrossRef Pubmed Google scholar
[3]
From the American Association of Neurological Surgeons (AANS), American Society of Neuroradiology (ASNR), Cardiovascular Radiology Society of Europe (CIRSE), Interventional Interventional Radiology Association (CIRA), Canadian of Neurological Surgeons (CNS), Congress Society of Minimally Invasive Neurological Therapy (ESMINT), European Society of Neuroradiology (ESNR), European Stroke Organization (ESO), European for Cardiovascular Angiography, Society (SCAI), Interventions of Interventional Radiology (SIR), Society of NeuroInterventional Surgery (SNIS), Society Stroke Organization (WSO), World D, Sacks B, Baxter BCV, Campbell JS, Carpenter C, Cognard D, Dippel M, Eesa U, Fischer K, Hausegger JA, Hirsch Hussain M, Shazam O, Jansen MV, Jayaraman AA, Khalessi BW, Kluck S, Lavine PM, Meyers S, Ramee DA, Rüfenacht CM, Schirmer D. Multisociety Consensus Quality Improvement Revised Consensus Statement for Endovascular Therapy of Acute Ischemic Stroke. Int J Stroke 2018; 13(6): 612–632
CrossRef Pubmed Google scholar
[4]
Clark AJ, Metherell LA. Mechanisms of disease: the adrenocorticotropin receptor and disease. Nat Clin Pract Endocrinol Metab 2006; 2(5): 282–290
CrossRef Pubmed Google scholar
[5]
Miller WL. The hypothalamic-pituitary-adrenal axis: a brief history. Horm Res Paediatr 2018; 89(4): 212–223
CrossRef Pubmed Google scholar
[6]
Yang Y, Harmon CM. Molecular determinants of ACTH receptor for ligand selectivity. Mol Cell Endocrinol 2020; 503: 110688
CrossRef Pubmed Google scholar
[7]
Freeman ME, Kanyicska B, Lerant A, Nagy G. Prolactin: structure, function, and regulation of secretion. Physiol Rev 2000; 80(4): 1523–1631
CrossRef Pubmed Google scholar
[8]
Zaidi M, New MI, Blair HC, Zallone A, Baliram R, Davies TF, Cardozo C, Iqbal J, Sun L, Rosen CJ, Yuen T. Actions of pituitary hormones beyond traditional targets. J Endocrinol 2018; 237(3): R83–R98
CrossRef Pubmed Google scholar
[9]
Klein JR. Physiological relevance of thyroid stimulating hormone and thyroid stimulating hormone receptor in tissues other than the thyroid. Autoimmunity 2003; 36(6–7): 417–421
CrossRef Pubmed Google scholar
[10]
Alonso H, Fernández-Ruocco J, Gallego M, Malagueta-Vieira LL, Rodríguez-de-Yurre A, Medei E, Casis O. Thyroid stimulating hormone directly modulates cardiac electrical activity. J Mol Cell Cardiol 2015; 89(Pt B): 280–286
CrossRef Pubmed Google scholar
[11]
Balzan S, Del Carratore R, Nicolini G, Beffy P, Lubrano V, Forini F, Iervasi G. Proangiogenic effect of TSH in human microvascular endothelial cells through its membrane receptor. J Clin Endocrinol Metab 2012; 97(5): 1763–1770
CrossRef Pubmed Google scholar
[12]
Sun SC, Hsu PJ, Wu FJ, Li SH, Lu CH, Luo CW. Thyrostimulin, but not thyroid-stimulating hormone (TSH), acts as a paracrine regulator to activate the TSH receptor in mammalian ovary. J Biol Chem 2010; 285(6): 3758–3765
CrossRef Pubmed Google scholar
[13]
Gong Y, Ma Y, Ye Z, Fu Z, Yang P, Gao B, Guo W, Hu D, Ye J, Ma S, Zhang F, Zhou L, Xu X, Li Z, Yang T, Zhou H. Thyroid stimulating hormone exhibits the impact on LDLR/LDL-c via up-regulating hepatic PCSK9 expression. Metabolism 2017; 76: 32–41
CrossRef Pubmed Google scholar
[14]
Tseng CP, Leong KK, Liou MJ, Hsu HL, Lin HC, Chen YA, Lin JD. Circulating epithelial cell counts for monitoring the therapeutic outcome of patients with papillary thyroid carcinoma. Oncotarget 2017; 8(44): 77453–77464
CrossRef Pubmed Google scholar
[15]
Rowe CW, Paul JW, Gedye C, Tolosa JM, Bendinelli C, McGrath S, Smith R. Targeting the TSH receptor in thyroid cancer. Endocr Relat Cancer 2017; 24(6): R191–R202
CrossRef Pubmed Google scholar
[16]
Rijks JM, Plat J, Dorenbos E, Penders B, Gerver WM, Vreugdenhil ACE. Association of TSH with cardiovascular disease risk in overweight and obese children during lifestyle intervention. J Clin Endocrinol Metab 2017; 102(6): 2051–2058
CrossRef Pubmed Google scholar
[17]
Xin W, Yu Y, Ma Y, Gao Y, Xu Y, Chen L, Wan Q. Thyroid-stimulating hormone stimulation downregulates autophagy and promotes apoptosis in chondrocytes. Endocr J 2017; 64(7): 749–757
CrossRef Pubmed Google scholar
[18]
Delitala AP, Steri M, Pilia MG, Dei M, Lai S, Delitala G, Schlessinger D, Cucca F. Menopause modulates the association between thyrotropin levels and lipid parameters: the SardiNIA study. Maturitas 2016; 92: 30–34
CrossRef Pubmed Google scholar
[19]
Panagiotou G, Pazaitou-Panayiotou K, Paschou SA, Komninou D, Kalogeris N, Vryonidou A, Mantzoros CS. Changes in thyroid hormone levels within the normal and/or subclinical hyper- or hypothyroid range do not affect circulating irisin levels in humans. Thyroid 2016; 26(8): 1039–1045
CrossRef Pubmed Google scholar
[20]
Burgos JR, Iresjö BM, Wärnåker S, Smedh U. Presence of TSH receptors in discrete areas of the hypothalamus and caudal brainstem with relevance for feeding controls—support for functional significance. Brain Res 2016; 1642: 278–286
CrossRef Pubmed Google scholar
[21]
Dutton CM, Joba W, Spitzweg C, Heufelder AE, Bahn RS. Thyrotropin receptor expression in adrenal, kidney, and thymus. Thyroid 1997; 7(6): 879–884
CrossRef Pubmed Google scholar
[22]
Zhang SF, Li LZ, Zhang W, Guo JR, Liu FF, Ma K, Chen SH, Zhang YQ. Association between plasma homocysteine levels and subclinical hypothyroidism in adult subjects: a meta-analysis. Horm Metab Res 2020; 52(9): 625–638
CrossRef Pubmed Google scholar
[23]
Nichols PH, Pan Y, May B, Pavlicova M, Rausch JC, Mencin AA, Thaker VV. Effect of TSH on non-alcoholic fatty liver disease (NAFLD) independent of obesity in children of predominantly Hispanic/Latino ancestry by causal mediation analysis. PLoS One 2020; 15(6): e0234985
CrossRef Pubmed Google scholar
[24]
Zhang R, Tian X, Qin L, Wei X, Wang J, Shen J. Factors predicting abnormal liver function tests induced by Graves’ disease alone: a retrospective cohort study. Medicine (Baltimore) 2015; 94(19): e839
CrossRef Pubmed Google scholar
[25]
He K, Hu Y, Xu XH, Mao XM. Hepatic dysfunction related to thyrotropin receptor antibody in patients with Graves’ disease. Exp Clin Endocrinol Diabetes 2014; 122(6): 368–372
CrossRef Pubmed Google scholar
[26]
Rauer C, Ringseis R, Rothe S, Wen G, Eder K. Sterol regulatory element-binding proteins are regulators of the rat thyroid peroxidase gene in thyroid cells. PLoS One 2014; 9(3): e91265
CrossRef Pubmed Google scholar
[27]
Chu YD, Yeh CT. The molecular function and clinical role of thyroid stimulating hormone receptor in cancer cells. Cells 2020; 9(7): 1730
CrossRef Pubmed Google scholar
[28]
Scappaticcio L, Longo M, Maiorino MI, Pernice V, Caruso P, Esposito K, Bellastella G. Abnormal liver blood tests in patients with hyperthyroidism: systematic review and meta-analysis. Thyroid 2021; 31(6): 884–894
CrossRef Pubmed Google scholar
[29]
Zhang W, Tian LM, Han Y, Ma HY, Wang LC, Guo J, Gao L, Zhao JJ. Presence of thyrotropin receptor in hepatocytes: not a case of illegitimate transcription. J Cell Mol Med 2009; 13(11–12): 4636–4642
CrossRef Pubmed Google scholar
[30]
Lin TY, Shekar AO, Li N, Yeh MW, Saab S, Wilson M, Leung AM. Incidence of abnormal liver biochemical tests in hyperthyroidism. Clin Endocrinol (Oxf) 2017; 86(5): 755–759
CrossRef Pubmed Google scholar
[31]
Sinha RA, Bruinstroop E, Singh BK, Yen PM. Nonalcoholic fatty liver disease and hypercholesterolemia: roles of thyroid hormones, metabolites, and agonists. Thyroid 2019; 29(9): 1173–1191
CrossRef Pubmed Google scholar
[32]
Jansen PL, Schaap FG. Pituitary TSH controls bile salt synthesis. J Hepatol 2015; 62(5): 1005–1007
CrossRef Pubmed Google scholar
[33]
Tian L, Ni J, Guo T, Liu J, Dang Y, Guo Q, Zhang L. TSH stimulates the proliferation of vascular smooth muscle cells. Endocrine 2014; 46(3): 651–658
CrossRef Pubmed Google scholar
[34]
Stojković M, Žarković M. Subclinical thyroid dysfunction and the risk of cardiovascular disease. Curr Pharm Des 2020; 26(43): 5617–5627
CrossRef Pubmed Google scholar
[35]
Tao Y, Gu H, Wu J, Sui J. Thyroid function is associated with non-alcoholic fatty liver disease in euthyroid subjects. Endocr Res 2015; 40(2): 74–78
CrossRef Pubmed Google scholar
[36]
Song Y, Zheng D, Zhao M, Qin Y, Wang T, Xing W, Gao L, Zhao J. Thyroid-stimulating hormone increases HNF-4α phosphorylation via cAMP/PKA pathway in the liver. Sci Rep 2015; 5(1): 13409
CrossRef Pubmed Google scholar
[37]
Zhang X, Song Y, Feng M, Zhou X, Lu Y, Gao L, Yu C, Jiang X, Zhao J. Thyroid-stimulating hormone decreases HMG-CoA reductase phosphorylation via AMP-activated protein kinase in the liver. J Lipid Res 2015; 56(5): 963–971
CrossRef Pubmed Google scholar
[38]
Beukhof CM, Massolt ET, Visser TJ, Korevaar TIM, Medici M, de Herder WW, Roeters van Lennep JE, Mulder MT, de Rijke YB, Reiners C, Verburg FA, Peeters RP. Effects of thyrotropin on peripheral thyroid hormone metabolism and serum lipids. Thyroid 2018; 28(2): 168–174
CrossRef Pubmed Google scholar
[39]
Song Y, Xu C, Shao S, Liu J, Xing W, Xu J, Qin C, Li C, Hu B, Yi S, Xia X, Zhang H, Zhang X, Wang T, Pan W, Yu C, Wang Q, Lin X, Wang L, Gao L, Zhao J. Thyroid-stimulating hormone regulates hepatic bile acid homeostasis via SREBP-2/HNF-4α/CYP7A1 axis. J Hepatol 2015; 62(5): 1171–1179
CrossRef Pubmed Google scholar
[40]
Rumińska M, Witkowska-Sędek E, Majcher A, Brzewski M, Krawczyk M, Pyrżak B. Serum TSH level in obese children and its correlations with atherogenic lipid indicators and carotid intima media thickness. J Ultrason 2018; 18(75): 296–301
CrossRef Pubmed Google scholar
[41]
Zhou L, Wu K, Zhang L, Gao L, Chen S. Liver-specific deletion of TSHR inhibits hepatic lipid accumulation in mice. Biochem Biophys Res Commun 2018; 497(1): 39–45
CrossRef Pubmed Google scholar
[42]
Mandato C, D’Acunzo I, Vajro P. Thyroid dysfunction and its role as a risk factor for non-alcoholic fatty liver disease: what’s new. Dig Liver Dis 2018; 50(11): 1163–1165
CrossRef Pubmed Google scholar
[43]
Yan F, Wang Q, Lu M, Chen W, Song Y, Jing F, Guan Y, Wang L, Lin Y, Bo T, Zhang J, Wang T, Xin W, Yu C, Guan Q, Zhou X, Gao L, Xu C, Zhao J. Thyrotropin increases hepatic triglyceride content through upregulation of SREBP-1c activity. J Hepatol 2014; 61(6): 1358–1364
CrossRef Pubmed Google scholar
[44]
He W, An X, Li L, Shao X, Li Q, Yao Q, Zhang JA. Relationship between hypothyroidism and non-alcoholic fatty liver disease: a systematic review and meta-analysis. Front Endocrinol (Lausanne) 2017; 8: 335
CrossRef Pubmed Google scholar
[45]
Guo Z, Li M, Han B, Qi X. Association of non-alcoholic fatty liver disease with thyroid function: a systematic review and meta-analysis. Dig Liver Dis 2018; 50(11): 1153–1162
CrossRef Pubmed Google scholar
[46]
Li Y, Wang L, Zhou L, Song Y, Ma S, Yu C, Zhao J, Xu C, Gao L. Thyroid stimulating hormone increases hepatic gluconeogenesis via CRTC2. Mol Cell Endocrinol 2017; 446: 70–80
CrossRef Pubmed Google scholar
[47]
Wang X, Mao J, Zhou X, Li Q, Gao L, Zhao J. Thyroid stimulating hormone triggers hepatic mitochondrial stress through cyclophilin D acetylation. Oxid Med Cell Longev 2020; 2020: 1249630
CrossRef Pubmed Google scholar
[48]
Shih YL, Huang YH, Lin KH, Chu YD, Yeh CT. Identification of functional thyroid stimulating hormone receptor and TSHR gene mutations in hepatocellular carcinoma. Anticancer Res 2018; 38(5): 2793–2802
Pubmed
[49]
Haraguchi K, Shimura H, Lin L, Endo T, Onaya T. Differentiation of rat preadipocytes is accompanied by expression of thyrotropin receptors. Endocrinology 1996; 137(8): 3200–3205
CrossRef Pubmed Google scholar
[50]
Lu M, Lin RY. TSH stimulates adipogenesis in mouse embryonic stem cells. J Endocrinol 2008; 196(1): 159–169
CrossRef Pubmed Google scholar
[51]
Haraguchi K, Shimura H, Lin L, Saito T, Endo T, Onaya T. Functional expression of thyrotropin receptor in differentiated 3T3-L1 cells: a possible model cell line of extrathyroidal expression of thyrotropin receptor. Biochem Biophys Res Commun 1996; 223(1): 193–198
CrossRef Pubmed Google scholar
[52]
Bell A, Gagnon A, Dods P, Papineau D, Tiberi M, Sorisky A. TSH signaling and cell survival in 3T3-L1 preadipocytes. Am J Physiol Cell Physiol 2002; 283(4): C1056–C1064
CrossRef Pubmed Google scholar
[53]
Niu S, Li H, Chen W, Zhao J, Gao L, Bo T. Beta-arrestin 1 mediates liver thyrotropin regulation of cholesterol conversion metabolism via the Akt-dependent pathway. Int J Endocrinol 2018; 2018: 4371396
Pubmed
[54]
Murakami M, Kamiya Y, Morimura T, Araki O, Imamura M, Ogiwara T, Mizuma H, Mori M. Thyrotropin receptors in brown adipose tissue: thyrotropin stimulates type II iodothyronine deiodinase and uncoupling protein-1 in brown adipocytes. Endocrinology 2001; 142(3): 1195–1201
CrossRef Pubmed Google scholar
[55]
Endo T, Kobayashi T. Thyroid-stimulating hormone receptor in brown adipose tissue is involved in the regulation of thermogenesis. Am J Physiol Endocrinol Metab 2008; 295(2): E514–E518
CrossRef Pubmed Google scholar
[56]
Elgadi A, Zemack H, Marcus C, Norgren S. Tissue-specific knockout of TSHr in white adipose tissue increases adipocyte size and decreases TSH-induced lipolysis. Biochem Biophys Res Commun 2010; 393(3): 526–530
CrossRef Pubmed Google scholar
[57]
Lu S, Guan Q, Liu Y, Wang H, Xu W, Li X, Fu Y, Gao L, Zhao J, Wang X. Role of extrathyroidal TSHR expression in adipocyte differentiation and its association with obesity. Lipids Health Dis 2012; 11(1): 17
CrossRef Pubmed Google scholar
[58]
Comas F, Lluch A, Sabater M, Latorre J, Ortega F, Ricart W, López M, Fernández-Real JM, Moreno-Navarrete JM. Adipose tissue TSH as a new modulator of human adipocyte mitochondrial function. Int J Obes 2019; 43(8): 1611–1619
CrossRef Pubmed Google scholar
[59]
Ma S, Jing F, Xu C, Zhou L, Song Y, Yu C, Jiang D, Gao L, Li Y, Guan Q, Zhao J. Thyrotropin and obesity: increased adipose triglyceride content through glycerol-3-phosphate acyltransferase 3. Sci Rep 2015; 5(1): 7633
CrossRef Pubmed Google scholar
[60]
Zhang J, Wu H, Ma S, Gao L, Yu C, Jing F, Zhao J. TSH promotes adiposity by inhibiting the browning of white fat. Adipocyte 2020; 9(1): 264–278
CrossRef Pubmed Google scholar
[61]
Drvota V, Janson A, Norman C, Sylvén C, Häggblad J, Brönnegård M, Marcus C. Evidence for the presence of functional thyrotropin receptor in cardiac muscle. Biochem Biophys Res Commun 1995; 211(2): 426–431
CrossRef Pubmed Google scholar
[62]
Sellitti DF, Hill R, Doi SQ, Akamizu T, Czaja J, Tao S, Koshiyama H. Differential expression of thyrotropin receptor mRNA in the porcine heart. Thyroid 1997; 7(4): 641–646
CrossRef Pubmed Google scholar
[63]
Huang W, Xu J, Jing F, Chen WB, Gao L, Yuan HT, Zhao JJ. Functional thyrotropin receptor expression in the ventricle and the effects on ventricular BNP secretion. Endocrine 2014; 46(2): 328–339
CrossRef Pubmed Google scholar
[64]
Dong J, Gao C, Liu J, Cao Y, Tian L. TSH inhibits SERCA2a and the PKA/PLN pathway in rat cardiomyocytes. Oncotarget 2016; 7(26): 39207–39215
CrossRef Pubmed Google scholar
[65]
Fernandez-Ruocco J, Gallego M, Rodriguez-de-Yurre A, Zayas-Arrabal J, Echeazarra L, Alquiza A, Fernández-López V, Rodriguez-Robledo JM, Brito O, Schleier Y, Sepulveda M, Oshiyama NF, Vila-Petroff M, Bassani RA, Medei EH, Casis O. High thyrotropin is critical for cardiac electrical remodeling and arrhythmia vulnerability in hypothyroidism. Thyroid 2020; 29(7): 934–945
CrossRef Pubmed Google scholar
[66]
Tian L, Zhang L, Liu J, Guo T, Gao C, Ni J. Effects of TSH on the function of human umbilical vein endothelial cells. J Mol Endocrinol 2014; 52(2): 215–222
CrossRef Pubmed Google scholar
[67]
Tahara K, Akahane T, Namisaki T, Moriya K, Kawaratani H, Kaji K, Takaya H, Sawada Y, Shimozato N, Sato S, Saikawa S, Nakanishi K, Kubo T, Fujinaga Y, Furukawa M, Kitagawa K, Ozutsumi T, Tsuji Y, Kaya D, Ogawa H, Takagi H, Ishida K, Mitoro A, Yoshiji H. Thyroid-stimulating hormone is an independent risk factor of non-alcoholic fatty liver disease. JGH Open 2020; 4(3): 400–404
CrossRef Pubmed Google scholar
[68]
Chen J, Shi M, Wang N, Yi P, Sun L, Meng Q. TSH inhibits eNOS expression in HMEC-1 cells through the TSHR/PI3K/AKT signaling pathway. Ann Endocrinol (Paris) 2019; 80(5–6): 273–279
CrossRef Pubmed Google scholar
[69]
Yang C, Lu M, Chen W, He Z, Hou X, Feng M, Zhang H, Bo T, Zhou X, Yu Y, Zhang H, Zhao M, Wang L, Yu C, Gao L, Jiang W, Zhang Q, Zhao J. Thyrotropin aggravates atherosclerosis by promoting macrophage inflammation in plaques. J Exp Med 2019; 216(5): 1182–1198
CrossRef Pubmed Google scholar
[70]
Tsai JA, Janson A, Bucht E, Kindmark H, Marcus C, Stark A, Zemack HR, Torring O. Weak evidence of thyrotropin receptors in primary cultures of human osteoblast-like cells. Calcif Tissue Int 2004; 74(5): 486–491
CrossRef Pubmed Google scholar
[71]
Abe E, Marians RC, Yu W, Wu XB, Ando T, Li Y, Iqbal J, Eldeiry L, Rajendren G, Blair HC, Davies TF, Zaidi M. TSH is a negative regulator of skeletal remodeling. Cell 2003; 115(2): 151–162
CrossRef Pubmed Google scholar
[72]
Milani AT, Khadem-Ansari MH, Rasmi Y. Effects of thyroid-stimulating hormone on adhesion molecules and pro-inflammatory cytokines secretion in human umbilical vein endothelial cells. Res Pharm Sci 2018; 13(6): 546–556
CrossRef Pubmed Google scholar
[73]
Hase H, Ando T, Eldeiry L, Brebene A, Peng Y, Liu L, Amano H, Davies TF, Sun L, Zaidi M, Abe E. TNFα mediates the skeletal effects of thyroid-stimulating hormone. Proc Natl Acad Sci USA 2006; 103(34): 12849–12854
CrossRef Pubmed Google scholar
[74]
Sun L, Davies TF, Blair HC, Abe E, Zaidi M. TSH and bone loss. Ann N Y Acad Sci 2006; 1068(1): 309–318
CrossRef Pubmed Google scholar
[75]
Sampath TK, Simic P, Sendak R, Draca N, Bowe AE, O’Brien S, Schiavi SC, McPherson JM, Vukicevic S. Thyroid-stimulating hormone restores bone volume, microarchitecture, and strength in aged ovariectomized rats. J Bone Miner Res 2007; 22(6): 849–859
CrossRef Pubmed Google scholar
[76]
Sun L, Vukicevic S, Baliram R, Yang G, Sendak R, McPherson J, Zhu LL, Iqbal J, Latif R, Natrajan A, Arabi A, Yamoah K, Moonga BS, Gabet Y, Davies TF, Bab I, Abe E, Sampath K, Zaidi M. Intermittent recombinant TSH injections prevent ovariectomy-induced bone loss. Proc Natl Acad Sci USA 2008; 105(11): 4289–4294
CrossRef Pubmed Google scholar
[77]
van der Weerd K, van Hagen PM, Schrijver B, Heuvelmans SJ, Hofland LJ, Swagemakers SM, Bogers AJ, Dik WA, Visser TJ, van Dongen JJ, van der Lelij AJ, Staal FJ. Thyrotropin acts as a T-cell developmental factor in mice and humans. Thyroid 2014; 24(6): 1051–1061
CrossRef Pubmed Google scholar
[78]
Spitzweg C, Joba W, Heufelder AE. Expression of thyroid-related genes in human thymus. Thyroid 1999; 9(2): 133–141
CrossRef Pubmed Google scholar
[79]
McLachlan SM, Aliesky HA, Banuelos B, Lesage S, Collin R, Rapoport B. High-level intrathymic thyrotrophin receptor expression in thyroiditis-prone mice protects against the spontaneous generation of pathogenic thyrotrophin receptor autoantibodies. Clin Exp Immunol 2017; 188(2): 243–253
CrossRef Pubmed Google scholar
[80]
Wu K, Zhao M, Ma C, Zhang H, Liu X, Zhou L, Zhao J, Gao L, Wang D. Thyrotropin alters T cell development in the thymus in subclinical hypothyroidism mouse model. Scand J Immunol 2017; 85(1): 35–42
CrossRef Pubmed Google scholar
[81]
Paschke R, Geenen V. Messenger RNA expression for a TSH receptor variant in the thymus of a two-year-old child. J Mol Med (Berl) 1995; 73(11): 577–580
CrossRef Pubmed Google scholar
[82]
Sellitti DF, Akamizu T, Doi SQ, Kim GH, Kariyil JT, Kopchik JJ, Koshiyama H. Renal expression of two ‘thyroid-specific’ genes: thyrotropin receptor and thyroglobulin. Exp Nephrol 2000; 8(4–5): 235–243
CrossRef Pubmed Google scholar
[83]
Jansen TA, Korevaar TIM, Mulder TA, White T, Muetzel RL, Peeters RP, Tiemeier H. Maternal thyroid function during pregnancy and child brain morphology: a time window-specific analysis of a prospective cohort. Lancet Diabetes Endocrinol 2019; 7(8): 629–637
CrossRef Pubmed Google scholar
[84]
Radu A, Pichon C, Camparo P, Antoine M, Allory Y, Couvelard A, Fromont G, Hai MT, Ghinea N. Expression of follicle-stimulating hormone receptor in tumor blood vessels. N Engl J Med 2010; 363(17): 1621–1630
CrossRef Pubmed Google scholar
[85]
Zhang R, Zhang S, Zhu X, Zhou Y, Wu X. Follicle-stimulating hormone receptor (FSHR) in Chinese alligator, Alligator sinensis: molecular characterization, tissue distribution and mRNA expression changes during the female reproductive cycle. Anim Reprod Sci 2015; 156: 40–50
CrossRef Pubmed Google scholar
[86]
Chen H, Cui Y, Yu S. Expression and localisation of FSHR, GHR and LHR in different tissues and reproductive organs of female yaks. Folia Morphol (Warsz) 2018; 77(2): 301–309
CrossRef Pubmed Google scholar
[87]
Guo Y, Zhao M, Bo T, Ma S, Yuan Z, Chen W, He Z, Hou X, Liu J, Zhang Z, Zhu Q, Wang Q, Lin X, Yang Z, Cui M, Liu L, Li Y, Yu C, Qi X, Wang Q, Zhang H, Guan Q, Zhao L, Xuan S, Yan H, Lin Y, Wang L, Li Q, Song Y, Gao L, Zhao J. Blocking FSH inhibits hepatic cholesterol biosynthesis and reduces serum cholesterol. Cell Res 2019; 29(2): 151–166
CrossRef Pubmed Google scholar
[88]
Mancinelli R, Onori P, Gaudio E, DeMorrow S, Franchitto A, Francis H, Glaser S, Carpino G, Venter J, Alvaro D, Kopriva S, White M, Kossie A, Savage J, Alpini G. Follicle-stimulating hormone increases cholangiocyte proliferation by an autocrine mechanism via cAMP-dependent phosphorylation of ERK1/2 and Elk-1. Am J Physiol Gastrointest Liver Physiol 2009; 297(1): G11–G26
CrossRef Pubmed Google scholar
[89]
Cui H, Zhao G, Liu R, Zheng M, Chen J, Wen J. FSH stimulates lipid biosynthesis in chicken adipose tissue by upregulating the expression of its receptor FSHR. J Lipid Res 2012; 53(5): 909–917
CrossRef Pubmed Google scholar
[90]
Liu P, Ji Y, Yuen T, Rendina-Ruedy E, DeMambro VE, Dhawan S, Abu-Amer W, Izadmehr S, Zhou B, Shin AC, Latif R, Thangeswaran P, Gupta A, Li J, Shnayder V, Robinson ST, Yu YE, Zhang X, Yang F, Lu P, Zhou Y, Zhu LL, Oberlin DJ, Davies TF, Reagan MR, Brown A, Kumar TR, Epstein S, Iqbal J, Avadhani NG, New MI, Molina H, van Klinken JB, Guo EX, Buettner C, Haider S, Bian Z, Sun L, Rosen CJ, Zaidi M. Blocking FSH induces thermogenic adipose tissue and reduces body fat. Nature 2017; 546(7656): 107–112
CrossRef Pubmed Google scholar
[91]
Gera S, Sant D, Haider S, Korkmaz F, Kuo TC, Mathew M, Perez-Pena H, Xie H, Chen H, Batista R, Ma K, Cheng Z, Hadelia E, Robinson C, Macdonald A, Miyashita S, Williams A, Jebian G, Miyashita H, Gumerova A, Ievleva K, Smith P, He J, Ryu V, DeMambro V, Quinn MA, Meseck M, Kim SM, Kumar TR, Iqbal J, New MI, Lizneva D, Rosen CJ, Hsueh AJ, Yuen T, Zaidi M. First-in-class humanized FSH blocking antibody targets bone and fat. Proc Natl Acad Sci USA 2020; 117(46): 28971–28979
CrossRef Pubmed Google scholar
[92]
Pumroy RA, Fluck EC 3rd, Ahmed T, Moiseenkova-Bell VY. Structural insights into the gating mechanisms of TRPV channels. Cell Calcium 2020; 87: 102168
CrossRef Pubmed Google scholar
[93]
Sun L, Peng Y, Sharrow AC, Iqbal J, Zhang Z, Papachristou DJ, Zaidi S, Zhu LL, Yaroslavskiy BB, Zhou H, Zallone A, Sairam MR, Kumar TR, Bo W, Braun J, Cardoso-Landa L, Schaffler MB, Moonga BS, Blair HC, Zaidi M. FSH directly regulates bone mass. Cell 2006; 125(2): 247–260
CrossRef Pubmed Google scholar
[94]
Ettinger AM, Gust SK, Kutzler MA. Luteinizing hormone receptor expression by nonneoplastic and neoplastic canine lymphocytes. Am J Vet Res 2019; 80(6): 572–577
CrossRef Pubmed Google scholar
[95]
Vuorenoja S, Rivero-Muller A, Kiiveri S, Bielinska M, Heikinheimo M, Wilson DB, Huhtaniemi IT, Rahman NA. Adrenocortical tumorigenesis, luteinizing hormone receptor and transcription factors GATA-4 and GATA-6. Mol Cell Endocrinol 2007; 269(1–2): 38–45
CrossRef Pubmed Google scholar
[96]
Burnham V, Sundby C, Laman-Maharg A, Thornton J. Luteinizing hormone acts at the hippocampus to dampen spatial memory. Horm Behav 2017; 89: 55–63
CrossRef Pubmed Google scholar
[97]
Gawronska B, Stepien A, Ziecik AJ. Effect of estradiol and progesterone on oviductal LH-receptors and LH-dependent relaxation of the porcine oviduct. Theriogenology 2000; 53(3): 659–672
CrossRef Pubmed Google scholar
[98]
Ponglowhapan S, Church DB, Khalid M. Differences in the expression of luteinizing hormone and follicle-stimulating hormone receptors in the lower urinary tract between intact and gonadectomised male and female dogs. Domest Anim Endocrinol 2008; 34(4): 339–351
CrossRef Pubmed Google scholar
[99]
Movsas TZ, Wong KY, Ober MD, Sigler R, Lei ZM, Muthusamy A. Confirmation of luteinizing hormone (LH) in living human vitreous and the effect of LH receptor reduction on murine electroretinogram. Neuroscience 2018; 385: 1–10
CrossRef Pubmed Google scholar
[100]
Nimura M, Udagawa J, Hatta T, Hashimoto R, Otani H. Spatial and temporal patterns of expression of melanocortin type 2 and 5 receptors in the fetal mouse tissues and organs. Anat Embryol (Berl) 2006; 211(2): 109–117
CrossRef Pubmed Google scholar
[101]
Guelfi G, Zerani M, Brecchia G, Parillo F, Dall’Aglio C, Maranesi M, Boiti C. Direct actions of ACTH on ovarian function of pseudopregnant rabbits. Mol Cell Endocrinol 2011; 339(1–2): 63–71
CrossRef Pubmed Google scholar
[102]
Malik IA, Triebel J, Posselt J, Khan S, Ramadori P, Raddatz D, Ramadori G. Melanocortin receptors in rat liver cells: change of gene expression and intracellular localization during acute-phase response. Histochem Cell Biol 2012; 137(3): 279–291
CrossRef Pubmed Google scholar
[103]
Lantang AM, Innes BA, Gan EH, Pearce SH, Lash GE. Expression of melanocortin receptors in human endometrium. Hum Reprod 2015; 30(10): 2404–2410
CrossRef Pubmed Google scholar
[104]
Johnston H, King PJ, O’Shaughnessy PJ. Effects of ACTH and expression of the melanocortin-2 receptor in the neonatal mouse testis. Reproduction 2007; 133(6): 1181–1187
CrossRef Pubmed Google scholar
[105]
Isales CM, Zaidi M, Blair HC. ACTH is a novel regulator of bone mass. Ann N Y Acad Sci 2010; 1192(1): 110–116
CrossRef Pubmed Google scholar
[106]
Norman D, Isidori AM, Frajese V, Caprio M, Chew SL, Grossman AB, Clark AJ, Michael Besser G, Fabbri A. ACTH and α-MSH inhibit leptin expression and secretion in 3T3-L1 adipocytes: model for a central-peripheral melanocortin-leptin pathway. Mol Cell Endocrinol 2003; 200(1–2): 99–109
CrossRef Pubmed Google scholar
[107]
Jun DJ, Na KY, Kim W, Kwak D, Kwon EJ, Yoon JH, Yea K, Lee H, Kim J, Suh PG, Ryu SH, Kim KT. Melanocortins induce interleukin 6 gene expression and secretion through melanocortin receptors 2 and 5 in 3T3-L1 adipocytes. J Mol Endocrinol 2010; 44(4): 225–236
CrossRef Pubmed Google scholar
[108]
Zhang X, Saarinen AM, Campbell LE, De Filippis EA, Liu J. Regulation of lipolytic response and energy balance by melanocortin 2 receptor accessory protein (MRAP) in adipocytes. Diabetes 2018; 67(2): 222–234
CrossRef Pubmed Google scholar
[109]
Renquist BJ, Murphy JG, Larson EA, Olsen D, Klein RF, Ellacott KL, Cone RD. Melanocortin-3 receptor regulates the normal fasting response. Proc Natl Acad Sci USA 2012; 109(23): E1489–E1498
CrossRef Pubmed Google scholar
[110]
van den Beukel JC, Grefhorst A, Quarta C, Steenbergen J, Mastroberardino PG, Lombès M, Delhanty PJ, Mazza R, Pagotto U, van der Lely AJ, Themmen AP. Direct activating effects of adrenocorticotropic hormone (ACTH) on brown adipose tissue are attenuated by corticosterone. FASEB J 2014; 28(11): 4857–4867
CrossRef Pubmed Google scholar
[111]
Ramage LE, Akyol M, Fletcher AM, Forsythe J, Nixon M, Carter RN, van Beek EJ, Morton NM, Walker BR, Stimson RH. Glucocorticoids acutely increase brown adipose tissue activity in humans, revealing species-specific differences in UCP-1 regulation. Cell Metab 2016; 24(1): 130–141
CrossRef Pubmed Google scholar
[112]
Simamura E, Arikawa T, Ikeda T, Shimada H, Shoji H, Masuta H, Nakajima Y, Otani H, Yonekura H, Hatta T. Melanocortins contribute to sequential differentiation and enucleation of human erythroblasts via melanocortin receptors 1, 2 and 5. PLoS One 2015; 10(4): e0123232
CrossRef Pubmed Google scholar
[113]
Nankova BB, Kvetnansky R, Sabban EL. Adrenocorticotropic hormone (MC-2) receptor mRNA is expressed in rat sympathetic ganglia and up-regulated by stress. Neurosci Lett 2003; 344(3): 149–152
CrossRef Pubmed Google scholar
[114]
Cirillo N, Prime SS. Keratinocytes synthesize and activate cortisol. J Cell Biochem 2011; 112(6): 1499–1505
CrossRef Pubmed Google scholar
[115]
Nagano M, Kelly PA. Tissue distribution and regulation of rat prolactin receptor gene expression. Quantitative analysis by polymerase chain reaction. J Biol Chem 1994; 269(18): 13337–13345
CrossRef Pubmed Google scholar
[116]
Zhang P, Ge Z, Wang H, Feng W, Sun X, Chu X, Jiang C, Wang Y, Zhu D, Bi Y. Prolactin improves hepatic steatosis via CD36 pathway. J Hepatol 2018; 68(6): 1247–1255
CrossRef Pubmed Google scholar
[117]
Shao S, Yao Z, Lu J, Song Y, He Z, Yu C, Zhou X, Zhao L, Zhao J, Gao L. Ablation of prolactin receptor increases hepatic triglyceride accumulation. Biochem Biophys Res Commun 2018; 498(3): 693–699
CrossRef Pubmed Google scholar
[118]
Luque GM, Lopez-Vicchi F, Ornstein AM, Brie B, De Winne C, Fiore E, Perez-Millan MI, Mazzolini G, Rubinstein M, Becu-Villalobos D. Chronic hyperprolactinemia evoked by disruption of lactotrope dopamine D2 receptors impacts on liver and adipocyte genes related to glucose and insulin balance. Am J Physiol Endocrinol Metab 2016; 311(6): E974–E988
CrossRef Pubmed Google scholar
[119]
Park S, Kim DS, Daily JW, Kim SH. Serum prolactin concentrations determine whether they improve or impair β-cell function and insulin sensitivity in diabetic rats. Diabetes Metab Res Rev 2011; 27(6): 564–574
CrossRef Pubmed Google scholar
[120]
Yu J, Xiao F, Zhang Q, Liu B, Guo Y, Lv Z, Xia T, Chen S, Li K, Du Y, Guo F. PRLR regulates hepatic insulin sensitivity in mice via STAT5. Diabetes 2013; 62(9): 3103–3113
CrossRef Pubmed Google scholar
[121]
Ling C, Hellgren G, Gebre-Medhin M, Dillner K, Wennbo H, Carlsson B, Billig H. Prolactin (PRL) receptor gene expression in mouse adipose tissue: increases during lactation and in PRL-transgenic mice. Endocrinology 2000; 141(10): 3564–3572
CrossRef Pubmed Google scholar
[122]
Barber MC, Clegg RA, Finley E, Vernon RG, Flint DJ. The role of growth hormone, prolactin and insulin-like growth factors in the regulation of rat mammary gland and adipose tissue metabolism during lactation. J Endocrinol 1992; 135(2): 195–202
CrossRef Pubmed Google scholar
[123]
Ling C, Svensson L, Odén B, Weijdegård B, Edén B, Edén S, Billig H. Identification of functional prolactin (PRL) receptor gene expression: PRL inhibits lipoprotein lipase activity in human white adipose tissue. J Clin Endocrinol Metab 2003; 88(4): 1804–1808
CrossRef Pubmed Google scholar
[124]
Moore BJ, Gerardo-Gettens T, Horwitz BA, Stern JS. Hyperprolactinemia stimulates food intake in the female rat. Brain Res Bull 1986; 17(4): 563–569
CrossRef Pubmed Google scholar
[125]
Nanbu-Wakao R, Fujitani Y, Masuho Y, Muramatu M, Wakao H. Prolactin enhances CCAAT enhancer-binding protein-β (C/EBPβ) and peroxisome proliferator-activated receptor γ (PPARγ) messenger RNA expression and stimulates adipogenic conversion of NIH-3T3 cells. Mol Endocrinol 2000; 14(2): 307–316
Pubmed
[126]
Flint DJ, Binart N, Boumard S, Kopchick JJ, Kelly P. Developmental aspects of adipose tissue in GH receptor and prolactin receptor gene disrupted mice: site-specific effects upon proliferation, differentiation and hormone sensitivity. J Endocrinol 2006; 191(1): 101–111
CrossRef Pubmed Google scholar
[127]
Nilsson L, Binart N, Bohlooly-Y M, Bramnert M, Egecioglu E, Kindblom J, Kelly PA, Kopchick JJ, Ormandy CJ, Ling C, Billig H. Prolactin and growth hormone regulate adiponectin secretion and receptor expression in adipose tissue. Biochem Biophys Res Commun 2005; 331(4): 1120–1126
CrossRef Pubmed Google scholar
[128]
Gualillo O, Lago F, García M, Menéndez C, Señarís R, Casanueva FF, Diéguez C. Prolactin stimulates leptin secretion by rat white adipose tissue. Endocrinology 1999; 140(11): 5149–5153
CrossRef Pubmed Google scholar
[129]
Sauvé D, Woodside B. Neuroanatomical specificity of prolactin-induced hyperphagia in virgin female rats. Brain Res 2000; 868(2): 306–314
CrossRef Pubmed Google scholar
[130]
Freemark M, Avril I, Fleenor D, Driscoll P, Petro A, Opara E, Kendall W, Oden J, Bridges S, Binart N, Breant B, Kelly PA. Targeted deletion of the PRL receptor: effects on islet development, insulin production, and glucose tolerance. Endocrinology 2002; 143(4): 1378–1385
CrossRef Pubmed Google scholar
[131]
Yang H, Di J, Pan J, Yu R, Teng Y, Cai Z, Deng X. The association between prolactin and metabolic parameters in PCOS women: a retrospective analysis. Front Endocrinol (Lausanne) 2020; 11: 263
CrossRef Pubmed Google scholar
[132]
Karnik SK, Chen H, McLean GW, Heit JJ, Gu X, Zhang AY, Fontaine M, Yen MH, Kim SK. Menin controls growth of pancreatic β-cells in pregnant mice and promotes gestational diabetes mellitus. Science 2007; 318(5851): 806–809
CrossRef Pubmed Google scholar
[133]
Bernard V, Young J, Chanson P, Binart N. New insights in prolactin: pathological implications. Nat Rev Endocrinol 2015; 11(5): 265–275
CrossRef Pubmed Google scholar
[134]
Kedzia C, Lacroix L, Ameur N, Ragot T, Kelly PA, Caillou B, Binart N. Medullary thyroid carcinoma arises in the absence of prolactin signaling. Cancer Res 2005; 65(18): 8497–8503
CrossRef Pubmed Google scholar
[135]
Tam AA, Kaya C, Aydın C, Ersoy R, Çakır B. Differentiated thyroid cancer in patients with prolactinoma. Turk J Med Sci 2016; 46(5): 1360–1365
CrossRef Pubmed Google scholar

Compliance with ethics guidelines

Chao Xu, Zhao He, Yongfeng Song, Shanshan Shao, Guang Yang , and Jiajun Zhao declare no competing financial interests. This manuscript is a review article and does not involve a research protocol requiring approval by the relevant institutional review board or ethics committee.

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(3266 KB)

Accesses

Citations

Detail

Sections
Recommended

/