Cannabidiol prevents depressive-like behaviors through the modulation of neural stem cell differentiation

Ming Hou, Suji Wang, Dandan Yu, Xinyi Lu, Xiansen Zhao, Zhangpeng Chen, Chao Yan

PDF(4070 KB)
PDF(4070 KB)
Front. Med. ›› 2022, Vol. 16 ›› Issue (2) : 227-239. DOI: 10.1007/s11684-021-0896-8
RESEARCH ARTICLE
RESEARCH ARTICLE

Cannabidiol prevents depressive-like behaviors through the modulation of neural stem cell differentiation

Author information +
History +

Abstract

Chronic stress impairs radial neural stem cell (rNSC) differentiation and adult hippocampal neurogenesis (AHN), whereas promoting AHN can increase stress resilience against depression. Therefore, investigating the mechanism of neural differentiation and AHN is of great importance for developing antidepressant drugs. The nonpsychoactive phytocannabinoid cannabidiol (CBD) has been shown to be effective against depression. However, whether CBD can modulate rNSC differentiation and hippocampal neurogenesis is unknown. Here, by using the chronic restraint stress (CRS) mouse model, we showed that hippocampal rNSCs mostly differentiated into astrocytes under stress conditions. Moreover, transcriptome analysis revealed that the FoxO signaling pathway was involved in the regulation of this process. The administration of CBD rescued depressive-like symptoms in CRS mice and prevented rNSCs overactivation and differentiation into astrocyte, which was partly mediated by the modulation of the FoxO signaling pathway. These results revealed a previously unknown neural mechanism for neural differentiation and AHN in depression and provided mechanistic insights into the antidepressive effects of CBD.

Keywords

cannabidiol / depression / radial neural stem cells / neurogenesis

Cite this article

Download citation ▾
Ming Hou, Suji Wang, Dandan Yu, Xinyi Lu, Xiansen Zhao, Zhangpeng Chen, Chao Yan. Cannabidiol prevents depressive-like behaviors through the modulation of neural stem cell differentiation. Front. Med., 2022, 16(2): 227‒239 https://doi.org/10.1007/s11684-021-0896-8

References

[1]
Wohleb ES, Franklin T, Iwata M, Duman RS. Integrating neuroimmune systems in the neurobiology of depression. Nat Rev Neurosci 2016; 17(8): 497–511
CrossRef Pubmed Google scholar
[2]
Flint J, Kendler KS. The genetics of major depression. Neuron 2014; 81(3): 484–503
CrossRef Pubmed Google scholar
[3]
Nestler EJ, Barrot M, DiLeone RJ, Eisch AJ, Gold SJ, Monteggia LM. Neurobiology of depression. Neuron 2002; 34(1): 13–25
CrossRef Pubmed Google scholar
[4]
Micheli L, Ceccarelli M, D’Andrea G, Tirone F. Depression and adult neurogenesis: positive effects of the antidepressant fluoxetine and of physical exercise. Brain Res Bull 2018; 143: 181–193
CrossRef Pubmed Google scholar
[5]
Anacker C, Hen R. Adult hippocampal neurogenesis and cognitive flexibility—linking memory and mood. Nat Rev Neurosci 2017; 18(6): 335–346
CrossRef Pubmed Google scholar
[6]
Sun L, Sun Q, Qi J. Adult hippocampal neurogenesis: an important target associated with antidepressant effects of exercise. Rev Neurosci 2017; 28(7): 693–703
CrossRef Pubmed Google scholar
[7]
Toda T, Parylak SL, Linker SB, Gage FH. The role of adult hippocampal neurogenesis in brain health and disease. Mol Psychiatry 2019; 24(1): 67–87
CrossRef Pubmed Google scholar
[8]
Snyder JS, Soumier A, Brewer M, Pickel J, Cameron HA. Adult hippocampal neurogenesis buffers stress responses and depressive behaviour. Nature 2011; 476(7361): 458–461
CrossRef Pubmed Google scholar
[9]
Mirescu C, Gould E. Stress and adult neurogenesis. Hippocampus 2006; 16(3): 233–238
CrossRef Pubmed Google scholar
[10]
Jung S, Choe S, Woo H, Jeong H, An HK, Moon H, Ryu HY, Yeo BK, Lee YW, Choi H, Mun JY, Sun W, Choe HK, Kim EK, Yu SW. Autophagic death of neural stem cells mediates chronic stress-induced decline of adult hippocampal neurogenesis and cognitive deficits. Autophagy 2020; 16(3): 512–530
CrossRef Pubmed Google scholar
[11]
Anacker C, Luna VM, Stevens GS, Millette A, Shores R, Jimenez JC, Chen B, Hen R. Hippocampal neurogenesis confers stress resilience by inhibiting the ventral dentate gyrus. Nature 2018; 559(7712): 98–102
CrossRef Pubmed Google scholar
[12]
Devinsky O, Cilio MR, Cross H, Fernandez-Ruiz J, French J, Hill C, Katz R, Di Marzo V, Jutras-Aswad D, Notcutt WG, Martinez-Orgado J, Robson PJ, Rohrback BG, Thiele E, Whalley B, Friedman D. Cannabidiol: pharmacology and potential therapeutic role in epilepsy and other neuropsychiatric disorders. Epilepsia 2014; 55(6): 791–802
CrossRef Pubmed Google scholar
[13]
Campos AC, Fogaça MV, Sonego AB, Guimarães FS. Cannabidiol, neuroprotection and neuropsychiatric disorders. Pharmacol Res 2016; 112: 119–127
CrossRef Pubmed Google scholar
[14]
Linge R, Jiménez-Sánchez L, Campa L, Pilar-Cuéllar F, Vidal R, Pazos A, Adell A, Díaz Á. Cannabidiol induces rapid-acting antidepressant-like effects and enhances cortical 5-HT/glutamate neurotransmission: role of 5-HT1A receptors. Neuropharmacology 2016; 103: 16–26
CrossRef Pubmed Google scholar
[15]
Pisanti S, Malfitano AM, Ciaglia E, Lamberti A, Ranieri R, Cuomo G, Abate M, Faggiana G, Proto MC, Fiore D, Laezza C, Bifulco M. Cannabidiol: state of the art and new challenges for therapeutic applications. Pharmacol Ther 2017; 175: 133–150
CrossRef Pubmed Google scholar
[16]
Scuderi C, Filippis DD, Iuvone T, Blasio A, Steardo A, Esposito G. Cannabidiol in medicine: a review of its therapeutic potential in CNS disorders. Phytother Res 2009; 23(5): 597–602
CrossRef Pubmed Google scholar
[17]
Berardi A, Schelling G, Campolongo P. The endocannabinoid system and post traumatic stress disorder (PTSD): from preclinical findings to innovative therapeutic approaches in clinical settings. Pharmacol Res 2016; 111: 668–678
CrossRef Pubmed Google scholar
[18]
Micale V, Di Marzo V, Sulcova A, Wotjak CT, Drago F. Endocannabinoid system and mood disorders: priming a target for new therapies. Pharmacol Ther 2013; 138(1): 18–37
CrossRef Pubmed Google scholar
[19]
Moda-Sava RN, Murdock MH, Parekh PK, Fetcho RN, Huang BS, Huynh TN, Witztum J, Shaver DC, Rosenthal DL, Alway EJ, Lopez K, Meng Y, Nellissen L, Grosenick L, Milner TA, Deisseroth K, Bito H, Kasai H, Liston C. Sustained rescue of prefrontal circuit dysfunction by antidepressant-induced spine formation. Science 2019; 364(6436): eaat8078
Pubmed
[20]
Huang L, Xi Y, Peng Y, Yang Y, Huang X, Fu Y, Tao Q, Xiao J, Yuan T, An K, Zhao H, Pu M, Xu F, Xue T, Luo M, So KF, Ren C. A visual circuit related to habenula underlies the antidepressive effects of light therapy. Neuron 2019; 102(1): 128–142.e8
CrossRef Pubmed Google scholar
[21]
Wang Y, Chen ZP, Hu H, Lei J, Zhou Z, Yao B, Chen L, Liang G, Zhan S, Zhu X, Jin F, Ma R, Zhang J, Liang H, Xing M, Chen XR, Zhang CY, Zhu JN, Chen X. Sperm microRNAs confer depression susceptibility to offspring. Sci Adv 2021; 7(7): eabd7605
CrossRef Pubmed Google scholar
[22]
Yang Y, Cui Y, Sang K, Dong Y, Ni Z, Ma S, Hu H. Ketamine blocks bursting in the lateral habenula to rapidly relieve depression. Nature 2018; 554(7692): 317–322
CrossRef Pubmed Google scholar
[23]
Fernandez DC, Fogerson PM, Lazzerini Ospri L, Thomsen MB, Layne RM, Severin D, Zhan J, Singer JH, Kirkwood A, Zhao H, Berson DM, Hattar S. Light affects mood and learning through distinct retina-brain pathways. Cell 2018; 175(1): 71–84.e18
CrossRef Pubmed Google scholar
[24]
Chen ZP, Zhang XY, Peng SY, Yang ZQ, Wang YB, Zhang YX, Chen X, Wang JJ, Zhu JN. Histamine H1 receptor contributes to vestibular compensation. J Neurosci 2019; 39(3): 420–433
CrossRef Pubmed Google scholar
[25]
Encinas JM, Michurina TV, Peunova N, Park JH, Tordo J, Peterson DA, Fishell G, Koulakov A, Enikolopov G. Division-coupled astrocytic differentiation and age-related depletion of neural stem cells in the adult hippocampus. Cell Stem Cell 2011; 8(5): 566–579PMID:21549330
CrossRef Google scholar
[26]
Sierra A, Martín-Suárez S, Valcárcel-Martín R, Pascual-Brazo J, Aelvoet SA, Abiega O, Deudero JJ, Brewster AL, Bernales I, Anderson AE, Baekelandt V, Maletić-Savatić M, Encinas JM. Neuronal hyperactivity accelerates depletion of neural stem cells and impairs hippocampal neurogenesis. Cell Stem Cell 2015; 16(5): 488–503
CrossRef Pubmed Google scholar
[27]
Huang T, Xu T, Wang Y, Zhou Y, Yu D, Wang Z, He L, Chen Z, Zhang Y, Davidson D, Dai Y, Hang C, Liu X, Yan C. Cannabidiol inhibits human glioma by induction of lethal mitophagy through activating TRPV4. Autophagy 2021; 25: 1–15
Pubmed
[28]
Fiksdal A, Hanlin L, Kuras Y, Gianferante D, Chen X, Thoma MV, Rohleder N. Associations between symptoms of depression and anxiety and cortisol responses to and recovery from acute stress. Psychoneuroendocrinology 2019; 102: 44–52
CrossRef Pubmed Google scholar
[29]
Dong J, Pan YB, Wu XR, He LN, Liu XD, Feng DF, Xu TL, Sun S, Xu NJ. A neuronal molecular switch through cell-cell contact that regulates quiescent neural stem cells. Sci Adv 2019; 5(2): eaav4416
CrossRef Pubmed Google scholar
[30]
Kaplan JS, Stella N, Catterall WA, Westenbroek RE. Cannabidiol attenuates seizures and social deficits in a mouse model of Dravet syndrome. Proc Natl Acad Sci USA 2017; 114(42): 11229–11234
CrossRef Pubmed Google scholar
[31]
Tunc-Ozcan E, Peng CY, Zhu Y, Dunlop SR, Contractor A, Kessler JA. Activating newborn neurons suppresses depression and anxiety-like behaviors. Nat Commun 2019; 10(1): 3768
CrossRef Pubmed Google scholar
[32]
Eisch AJ, Petrik D. Depression and hippocampal neurogenesis: a road to remission? Science 2012; 338(6103): 72–75
CrossRef Pubmed Google scholar
[33]
Peng L, Bonaguidi MA. Function and dysfunction of adult hippocampal neurogenesis in regeneration and disease. Am J Pathol 2018; 188(1): 23–28
CrossRef Pubmed Google scholar
[34]
Fogaça MV, Campos AC, Coelho LD, Duman RS, Guimarães FS. The anxiolytic effects of cannabidiol in chronically stressed mice are mediated by the endocannabinoid system: role of neurogenesis and dendritic remodeling. Neuropharmacology 2018; 135: 22–33
CrossRef Pubmed Google scholar
[35]
Campos AC, Moreira FA, Gomes FV, Del Bel EA, Guimarães FS. Multiple mechanisms involved in the large-spectrum therapeutic potential of cannabidiol in psychiatric disorders. Philos Trans R Soc Lond B Biol Sci 2012; 367(1607): 3364–3378
CrossRef Pubmed Google scholar
[36]
Campos AC, Ortega Z, Palazuelos J, Fogaça MV, Aguiar DC, Díaz-Alonso J, Ortega-Gutiérrez S, Vázquez-Villa H, Moreira FA, Guzmán M, Galve-Roperh I, Guimarães FS. The anxiolytic effect of cannabidiol on chronically stressed mice depends on hippocampal neurogenesis: involvement of the endocannabinoid system. Int J Neuropsychopharmacol 2013; 16(6): 1407–1419
CrossRef Pubmed Google scholar
[37]
Furukawa TA, Cipriani A, Cowen PJ, Leucht S, Egger M, Salanti G. Optimal dose of selective serotonin reuptake inhibitors, venlafaxine, and mirtazapine in major depression: a systematic review and dose-response meta-analysis. Lancet Psychiatry 2019; 6(7): 601–609
CrossRef Pubmed Google scholar
[38]
Zanelati TV, Biojone C, Moreira FA, Guimarães FS, Joca SR. Antidepressant-like effects of cannabidiol in mice: possible involvement of 5-HT1A receptors. Br J Pharmacol 2010; 159(1): 122–128
CrossRef Pubmed Google scholar
[39]
Lages YVM, Rossi AD, Krahe TE, Landeira-Fernandez J. Effect of chronic unpredictable mild stress on the expression profile of serotonin receptors in rats and mice: a meta-analysis. Neurosci Biobehav Rev 2021; 124: 78–88
CrossRef Pubmed Google scholar
[40]
Hill JD, Zuluaga-Ramirez V, Gajghate S, Winfield M, Persidsky Y. Activation of GPR55 increases neural stem cell proliferation and promotes early adult hippocampal neurogenesis. Br J Pharmacol 2018; 175(16): 3407–3421
CrossRef Pubmed Google scholar

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21877060 and 31900824) and the Postdoctoral Research Foundation of China (No. 2019M651779).

Compliance with ethics guidelines

Ming Hou, Suji Wang, Dandan Yu, Xinyi Lu, Xiansen Zhao, Zhangpeng Chen, and Chao Yan declare that they have no conflict of interest. All institutional and national guidelines for the care and use of laboratory animals were followed.

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://doi.org/10.1007/s11684-021-0896-8 and is accessible for authorized users.

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(4070 KB)

Accesses

Citations

Detail

Sections
Recommended

/