Degradation of SARS-CoV-2 receptor ACE2 by the E3 ubiquitin ligase Skp2 in lung epithelial cells
Guizhen Wang, Qun Zhao, Hui Zhang, Fan Liang, Chen Zhang, Jun Wang, Zhenyin Chen, Ran Wu, Hong Yu, Beibei Sun, Hua Guo, Ruie Feng, Kaifeng Xu, Guangbiao Zhou
Degradation of SARS-CoV-2 receptor ACE2 by the E3 ubiquitin ligase Skp2 in lung epithelial cells
An unexpected observation among the COVID-19 pandemic is that smokers constituted only 1.4%−18.5% of hospitalized adults, calling for an urgent investigation to determine the role of smoking in SARS-CoV-2 infection. Here, we show that cigarette smoke extract (CSE) and carcinogen benzo(a)pyrene (BaP) increase ACE2 mRNA but trigger ACE2 protein catabolism. BaP induces an aryl hydrocarbon receptor (AhR)-dependent upregulation of the ubiquitin E3 ligase Skp2 for ACE2 ubiquitination. ACE2 in lung tissues of non-smokers is higher than in smokers, consistent with the findings that tobacco carcinogens downregulate ACE2 in mice. Tobacco carcinogens inhibit SARS-CoV-2 spike protein pseudovirions infection of the cells. Given that tobacco smoke accounts for 8 million deaths including 2.1 million cancer deaths annually and Skp2 is an oncoprotein, tobacco use should not be recommended and cessation plan should be prepared for smokers in COVID-19 pandemic.
SARS-CoV-2 / tobacco smoke / benzo(a)pyrene / ACE2 / Skp2
[1] |
COVID-19 Dashboard by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University. (JHU). 2020. https://www.arcgis.com/apps/opsdashboard/index.html#/bda759-4740fd40299423467b48e9ecf6 (accessed December 8, 2020)
|
[2] |
World Health Organization. Smoking and COVID-19. 2020. https://www.who.int/news-room/commentaries/detail/smoking-and-covid-19 (accessed December 8, 2020)
|
[3] |
Lippi G, Henry BM. Active smoking is not associated with severity of coronavirus disease 2019 (COVID-19). Eur J Intern Med 2020; 75:107–108
CrossRef
Pubmed
Google scholar
|
[4] |
Farsalinos K, Barbouni A, Niaura R. Systematic review of the prevalence of current smoking among hospitalized COVID-19 patients in China: could nicotine be a therapeutic option? Intern Emerg Med 2020; 15(5): 845–852
CrossRef
Pubmed
Google scholar
|
[5] |
CDC COVID-19 Response Team. Preliminary estimates of the prevalence of selected underlying health conditions among patients with coronavirus disease 2019—United States, February 12−March 28, 2020. MMWR Morb Mortal Wkly Rep 2020; 69(13): 382–386
CrossRef
Pubmed
Google scholar
|
[6] |
Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, Liu L, Shan H, Lei CL, Hui DSC, Du B, Li LJ, Zeng G, Yuen KY, Chen RC, Tang CL, Wang T, Chen PY, Xiang J, Li SY, Wang JL, Liang ZJ, Peng YX, Wei L, Liu Y, Hu YH, Peng P, Wang JM, Liu JY, Chen Z, Li G, Zheng ZJ, Qiu SQ, Luo J, Ye CJ, Zhu SY, Zhong NS; China Medical Treatment Expert Group for Covid-19. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med 2020; 382(18): 1708–1720
CrossRef
Pubmed
Google scholar
|
[7] |
Miyara M, Tubach F, Pourcher V, Morelot-Panzini C, Pernet J, Haroche J, Lebbah S, Morawiec E, Gorochov G, Caumes E, Hausfater P, Combes A, Similowski T, Amoura Z. Low incidence of daily active tobacco smoking in patients with symptomatic COVID-19 infection. Qeios 2020; 10.32388/WPP19W
CrossRef
Google scholar
|
[8] |
Vardavas CI, Nikitara K. COVID-19 and smoking: a systematic review of the evidence. Tob Induc Dis 2020; 18: 20
CrossRef
Pubmed
Google scholar
|
[9] |
Gebel S, Diehl S, Pype J, Friedrichs B, Weiler H, Schüller J, Xu H, Taguchi K, Yamamoto M, Müller T. The transcriptome of Nrf2−/− mice provides evidence for impaired cell cycle progression in the development of cigarette smoke-induced emphysematous changes. Toxicol Sci 2010; 115(1): 238–252
CrossRef
Pubmed
Google scholar
|
[10] |
Wang GZ, Cheng X, Zhou B, Wen ZS, Huang YC, Chen HB, Li GF, Huang ZL, Zhou YC, Feng L, Wei MM, Qu LW, Cao Y, Zhou GB. The chemokine CXCL13 in lung cancers associated with environmental polycyclic aromatic hydrocarbons pollution. eLife 2015; 4: e09419
CrossRef
Pubmed
Google scholar
|
[11] |
Carnevali S, Petruzzelli S, Longoni B, Vanacore R, Barale R, Cipollini M, Scatena F, Paggiaro P, Celi A, Giuntini C. Cigarette smoke extract induces oxidative stress and apoptosis in human lung fibroblasts. Am J Physiol Lung Cell Mol Physiol 2003; 284(6): L955–L963
CrossRef
Pubmed
Google scholar
|
[12] |
Wang GZ, Cheng X, Li XC, Liu YQ, Wang XQ, Shi X, Wang ZY, Guo YQ, Wen ZS, Huang YC, Zhou GB. Tobacco smoke induces production of chemokine CCL20 to promote lung cancer. Cancer Lett 2015; 363(1): 60–70
CrossRef
Pubmed
Google scholar
|
[13] |
Liu Z, Ma L, Wen ZS, Hu Z, Wu FQ, Li W, Liu J, Zhou GB. Cancerous inhibitor of PP2A is targeted by natural compound celastrol for degradation in non-small-cell lung cancer. Carcinogenesis 2014; 35(4): 905–914
CrossRef
Pubmed
Google scholar
|
[14] |
Wang GZ, Zhang L, Zhao XC, Gao SH, Qu LW, Yu H, Fang WF, Zhou YC, Liang F, Zhang C, Huang YC, Liu Z, Fu YX, Zhou GB. The Aryl hydrocarbon receptor mediates tobacco-induced PD-L1 expression and is associated with response to immunotherapy. Nat Commun 2019; 10(1): 1125
CrossRef
Pubmed
Google scholar
|
[15] |
Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu NH, Nitsche A, Müller MA, Drosten C, Pöhlmann S. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020; 181(2): 271–280
CrossRef
Pubmed
Google scholar
|
[16] |
Zou X, Chen K, Zou J, Han P, Hao J, Han Z. Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Front Med 2020; 14(2): 185–192
CrossRef
Pubmed
Google scholar
|
[17] |
Cai G, Bossé Y, Xiao F, Kheradmand F, Amos CI. Tobacco smoking increases the lung gene expression of ACE2, the receptor of SARS-CoV-2. Am J Respir Crit Care Med 2020; 201(12): 1557–1559
CrossRef
Pubmed
Google scholar
|
[18] |
Smith JC, Sausville EL, Girish V, Yuan ML, Vasudevan A, John KM, Sheltzer JM. Cigarette smoke exposure and inflammatory signaling increase the expression of the SARS-CoV-2 receptor ACE2 in the respiratory tract. Dev Cell 2020; 53(5): 514–529.e3
CrossRef
Pubmed
Google scholar
|
[19] |
Zhou G, Chen S, Chen Z. Advances in COVID-19: the virus, the pathogenesis, and evidence-based control and therapeutic strategies. Front Med 2020; 14(2): 117–125
CrossRef
Pubmed
Google scholar
|
[20] |
Gheblawi M, Wang K, Viveiros A, Nguyen Q, Zhong JC, Turner AJ, Raizada MK, Grant MB, Oudit GY. Angiotensin-converting enzyme 2: SARS-CoV-2 receptor and regulator of the renin-angiotensin system: celebrating the 20th anniversary of the discovery of ACE2. Circ Res 2020; 126(10): 1456–1474
CrossRef
Pubmed
Google scholar
|
[21] |
Kamitani T, Kito K, Nguyen HP, Yeh ETH. Characterization of NEDD8, a developmentally down-regulated ubiquitin-like protein. J Biol Chem 1997; 272(45): 28557–28562
CrossRef
Pubmed
Google scholar
|
[22] |
Zhang H, Kobayashi R, Galaktionov K, Beach D. p19Skp1 and p45Skp2 are essential elements of the cyclin A-CDK2 S phase kinase. Cell 1995; 82(6): 915–925
CrossRef
Pubmed
Google scholar
|
[23] |
Tsay JJ, Tchou-Wong KM, Greenberg AK, Pass H, Rom WN. Aryl hydrocarbon receptor and lung cancer. Anticancer Res 2013; 33(4): 1247–1256
Pubmed
|
[24] |
Ou X, Liu Y, Lei X, Li P, Mi D, Ren L, Guo L, Guo R, Chen T, Hu J, Xiang Z, Mu Z, Chen X, Chen J, Hu K, Jin Q, Wang J, Qian Z. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat Commun 2020; 11(1): 1620
CrossRef
Pubmed
Google scholar
|
[25] |
World Health Organization. Tobacco fact sheet. 2020. http://www.who.int/mediacentre/factsheets/fs339/en/ (accessed December 8, 2020)
|
[26] |
Carter BD, Abnet CC, Feskanich D, Freedman ND, Hartge P, Lewis CE, Ockene JK, Prentice RL, Speizer FE, Thun MJ, Jacobs EJ. Smoking and mortality—beyond established causes. N Engl J Med 2015; 372(7): 631–640
CrossRef
Pubmed
Google scholar
|
[27] |
Centers for Disease Control and Prevention (US), National Center for Chronic Disease Prevention and Health Promotion (US), Office on Smoking and Health (US). How tobacco smoke causes disease: the biology and behavioral basis for smoking-attributable disease: a report of the surgeon general. Atlanta (GA): Centers for Disease Control and Prevention (US). 2010. http://www.ncbi.nlm.nih.gov/books/NBK53017/ (accessed December 8, 2020)
|
[28] |
Zhou G. Tobacco, air pollution, environmental carcinogenesis, and thoughts on conquering strategies of lung cancer. Cancer Biol Med 2019; 16(4): 700–713
Pubmed
|
[29] |
Liu J, Peng Y, Zhang J, Long J, Liu J, Wei W. Targeting SCF E3 ligases for cancer therapies. Adv Exp Med Biol 2020; 1217: 123–146
CrossRef
Pubmed
Google scholar
|
[30] |
Xu JY, Zhang C, Wang X, Zhai L, Ma Y, Mao Y, Qian K, Sun C, Liu Z, Jiang S, Wang M, Feng L, Zhao L, Liu P, Wang B, Zhao X, Xie H, Yang X, Zhao L, Chang Y, Jia J, Wang X, Zhang Y, Wang Y, Yang Y, Wu Z, Yang L, Liu B, Zhao T, Ren S, Sun A, Zhao Y, Ying W, Wang F, Wang G, Zhang Y, Cheng S, Qin J, Qian X, Wang Y, Li J, He F, Xiao T, Tan M. Integrative proteomic characterization of human lung adenocarcinoma. Cell 2020; 182(1): 245–261.e17
CrossRef
Pubmed
Google scholar
|
[31] |
Deshotels MR, Xia H, Sriramula S, Lazartigues E, Filipeanu CM. Angiotensin II mediates angiotensin converting enzyme type 2 internalization and degradation through an angiotensin II type I receptor-dependent mechanism. Hypertension 2014; 64(6): 1368–1375
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |