Advances in COVID-19: the virus, the pathogenesis, and evidence-based control and therapeutic strategies
Guangbiao Zhou, Saijuan Chen, Zhu Chen
Advances in COVID-19: the virus, the pathogenesis, and evidence-based control and therapeutic strategies
Since the outbreak of the COVID-19 pandemic in early December 2019, 81 174 confirmed cases and 3242 deaths have been reported in China as of March 19, 2020. The Chinese people and government have contributed huge efforts to combat this disease, resulting in significant improvement of the situation, with 58 new cases (34 were imported cases) and 11 new deaths reported on March 19, 2020. However, as of March 19, 2020, the COVID-19 pandemic continues to develop in 167 countries/territories outside of China, and 128 665 confirmed cases and 5536 deaths have been reported, with 16 498 new cases and 817 new deaths occurring in last 24 hours. Therefore, the world should work together to fight against this pandemic. Here, we review the recent advances in COVID-19, including the insights in the virus, the responses of the host cells, the cytokine release syndrome, and the therapeutic approaches to inhibit the virus and alleviate the cytokine storm. By sharing knowledge and deepening our understanding of the virus and the disease pathogenesis, we believe that the community can efficiently develop effective vaccines and drugs, and the mankind will eventually win this battle against this pandemic.
COVID-19 / SARS-CoV-2 / pathogenesis / evidence-based medicine / control and therapeutic strategies
[1] |
Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q. Structural basis for the recognition of the SARS-CoV-2 by full-length human ACE2. Science 2020 Mar 4. [Epub ahead of print] doi: 10.1126/science.abb2762
CrossRef
Google scholar
|
[2] |
World Health Organization. Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19). 2020.
|
[3] |
World Health Organization. Coronavirus disease 2019 (COVID-19) Situation Report — 59. March 19, 2020.
|
[4] |
World Health Organization. Coronavirus disease 2019 (COVID-19) Situation Report — 37. February 26, 2020.
|
[5] |
Zhang Y, Cao D. Wuhan to close its largest makeshift hospital. China Daily. March 7, 2020.
|
[6] |
World Health Organization. WHO Director-General’s opening remarks at the media briefing on COVID-19 — 11 March 2020. March 11, 2020.
|
[7] |
Kannan S, Shaik Syed Ali P, Sheeza A, Hemalatha K. COVID-19 (novel coronavirus 2019) — recent trends. Eur Rev Med Pharmacol Sci 2020; 24(4): 2006–2011
CrossRef
Pubmed
Google scholar
|
[8] |
Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, Shi Z, Hu Z, Zhong W, Xiao G. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res 2020; 30(3): 269–271
CrossRef
Pubmed
Google scholar
|
[9] |
Tang X, Wu C, Li X, Song Y, Yao X, Wu X, Duan Y, Zhang H, Wang Y, Qian Z, Cui J, Lu J. On the origin and continuing evolution of SARS-CoV-2. Natl Sci Rev 2020 Mar 3. [Epub ahead of print] doi:10.1093/nsr/nwaa036
CrossRef
Google scholar
|
[10] |
Maclean OA, Orton R, Singer J, Robertson DL. Response to “On the origin and continuing evolution of SARS-CoV-2”. 2020.
|
[11] |
Zhang L, Yang J-R, Zhang Z, Lin Z. Genomic variations of SARS-CoV-2 suggest multiple outbreak sources of transmission. medRxiv 2020; doi: 10.1101/2020.02.25.20027953
CrossRef
Google scholar
|
[12] |
Ceraolo C, Giorgi FM. Genomic variance of the 2019-nCoV coronavirus. J Med Virol 2020; 92: 522–528
CrossRef
Google scholar
|
[13] |
Wu A, Niu P, Wang L, Zhou H, Zhao X, Wang W,
CrossRef
Google scholar
|
[14] |
Yu WB, Tang GD, Zhang L, Corlett RT. Decoding evolution and transmissions of novel pneumonia coronavirus using the whole genomic data. ChinaXiv 2020.
|
[15] |
Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF. The proximal origin of SARS-CoV-2. Nat Med 2020. [Epub ahead of print] doi: 10.1038/s41591-020-0820-9
CrossRef
Google scholar
|
[16] |
Liu H, Wu C, Yang Y, Liu Y, Zhang P, Wang Y, Wang Q,
|
[17] |
Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu NH, Nitsche A, Müller MA, Drosten C, Pöhlmann S. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020 Mar 4. [Epub ahead of print] doi: 10.1016/j.cell.2020.02.052
CrossRef
Pubmed
Google scholar
|
[18] |
Zou X, Chen K, Zou J, Han P, Hao J, Han Z. The single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Front Med 2020 Mar 12. [Epub ahead of print] doi: 10.1007/s11684-020-0754-0
CrossRef
Google scholar
|
[19] |
Du L, He Y, Zhou Y, Liu S, Zheng BJ, Jiang S. The spike protein of SARS-CoV—a target for vaccine and therapeutic development. Nat Rev Microbiol 2009; 7(3): 226–236
CrossRef
Pubmed
Google scholar
|
[20] |
Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, Wang W, Song H, Huang B, Zhu N, Bi Y, Ma X, Zhan F, Wang L, Hu T, Zhou H, Hu Z, Zhou W, Zhao L, Chen J, Meng Y, Wang J, Lin Y, Yuan J, Xie Z, Ma J, Liu WJ, Wang D, Xu W, Holmes EC, Gao GF, Wu G, Chen W, Shi W, Tan W. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 2020; 395(10224): 565–574
CrossRef
Pubmed
Google scholar
|
[21] |
Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, Qiu Y, Wang J, Liu Y, Wei Y, Xia J, Yu T, Zhang X, Zhang L. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 2020; 395(10223): 507–513
CrossRef
Pubmed
Google scholar
|
[22] |
Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, Wang B, Xiang H, Cheng Z, Xiong Y, Zhao Y, Li Y, Wang X, Peng Z. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA 2020; 323(11): 1061
CrossRef
Pubmed
Google scholar
|
[23] |
Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, Liu L, Shan H, Lei CL, Hui DSC, Du B, Li LJ, Zeng G, Yuen KY, Chen RC, Tang CL, Wang T, Chen PY, Xiang J, Li SY, Wang JL, Liang ZJ, Peng YX, Wei L, Liu Y, Hu YH, Peng P, Wang JM, Liu JY, Chen Z, Li G, Zheng ZJ, Qiu SQ, Luo J, Ye CJ, Zhu SY, Zhong NS; China Medical Treatment Expert Group for Covid-19. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med 2020 Feb 28. [Epub ahead of print] doi: 10.1056/NEJMoa2002032
CrossRef
Pubmed
Google scholar
|
[24] |
Liu J, Li S, Liu J, Liang B, Wang X, Wang H,
CrossRef
Google scholar
|
[25] |
Diao B, Wang C, Tan Y, Chen X, Liu Y, Ning L,
CrossRef
Google scholar
|
[26] |
Zhang Z, Li X, Zhang W, Shi ZL, Zheng Z, Wang T. Clinical features and treatment of 2019-nCov pneumonia patients in Wuhan: report of a couple cases. Virol Sin 2020 Feb 7. [Epub ahead of print] doi: 10.1007/s12250-020-00203-8
CrossRef
Pubmed
Google scholar
|
[27] |
Wang W, He J, Lie P, Huang L, Wu S, Lin Y,
CrossRef
Google scholar
|
[28] |
Nazinitsky A, Rosenthal KS. Cytokine storms: systemic disasters of infectious diseases. Infect Dis Clin Pract 2010; 18(3): 188–192
CrossRef
Google scholar
|
[29] |
Chatenoud L, Ferran C, Reuter A, Legendre C, Gevaert Y, Kreis H, Franchimont P, Bach JF. Systemic reaction to the anti-T-cell monoclonal antibody OKT3 in relation to serum levels of tumor necrosis factor and interferon-γ [corrected]. N Engl J Med 1989; 320(21): 1420–1421
CrossRef
Pubmed
Google scholar
|
[30] |
Behrens EM. Cytokines in cytokine storm syndrome. In: Cron RQ, Behrens EM. Cytokine Storm Syndrome. Cham: Springer International Publishing, 2019. 197–207
|
[31] |
Okabayashi T, Kariwa H, Yokota S, Iki S, Indoh T, Yokosawa N, Takashima I, Tsutsumi H, Fujii N. Cytokine regulation in SARS coronavirus infection compared to other respiratory virus infections. J Med Virol 2006; 78(4): 417–424
CrossRef
Pubmed
Google scholar
|
[32] |
Teijaro JR, Walsh KB, Cahalan S, Fremgen DM, Roberts E, Scott F, Martinborough E, Peach R, Oldstone MB, Rosen H. Endothelial cells are central orchestrators of cytokine amplification during influenza virus infection. Cell 2011; 146(6): 980–991
CrossRef
Pubmed
Google scholar
|
[33] |
Channappanavar R, Perlman S. Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Semin Immunopathol 2017; 39(5): 529–539
CrossRef
Pubmed
Google scholar
|
[34] |
Liu T, Zhang J, Yang Y, Ma H, Li Z, Zhang J,
CrossRef
Google scholar
|
[35] |
Yu L, Tong Y, Shen G, Fu A, Lai Y, Zhou X,
CrossRef
Google scholar
|
[36] |
Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, Liu S, Zhao P, Liu H, Zhu L, Tai Y, Bai C, Gao T, Song J, Xia P, Dong J, Zhao J, Wang FS. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med 2020 Feb 18. [Epub ahead of print] doi: 10.1016/S2213-2600(20)30076-X
CrossRef
Pubmed
Google scholar
|
[37] |
Zhou Y, Fu B, Zheng X, Wang D, Zhao C, Qi Y,
CrossRef
Google scholar
|
[38] |
Huang KJ, Su IJ, Theron M, Wu YC, Lai SK, Liu CC, Lei HY. An interferon-g-related cytokine storm in SARS patients. J Med Virol 2005; 75(2): 185–194
CrossRef
Pubmed
Google scholar
|
[39] |
Luo W, Yu H, Gou J, Li X, Sun Y, Li J, Liu L. Clinical pathology of critical patient with novel coronavirus pneumonia (COVID-19). Preprints 2020; 2020020407
|
[40] |
Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, Si HR, Zhu Y, Li B, Huang CL, Chen HD, Chen J, Luo Y, Guo H, Jiang RD, Liu MQ, Chen Y, Shen XR, Wang X, Zheng XS, Zhao K, Chen QJ, Deng F, Liu LL, Yan B, Zhan FX, Wang YY, Xiao GF, Shi ZL. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020; 579(7798): 270–273
CrossRef
Pubmed
Google scholar
|
[41] |
Anastassopoulou C, Russo L, Tsakris A, Siettos C. Data-based analysis, modelling and forecasting of the novel coronavirus (2019-nCoV) outbreak. medRxiv 2020; doi: 10.1101/2020.02.11. 20022186
CrossRef
Google scholar
|
[42] |
Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, Ren R, Leung KSM, Lau EHY, Wong JY, Xing X, Xiang N, Wu Y, Li C, Chen Q, Li D, Liu T, Zhao J, Liu M, Tu W, Chen C, Jin L, Yang R, Wang Q, Zhou S, Wang R, Liu H, Luo Y, Liu Y, Shao G, Li H, Tao Z, Yang Y, Deng Z, Liu B, Ma Z, Zhang Y, Shi G, Lam TTY, Wu JTK, Gao GF, Cowling BJ, Yang B, Leung GM, Feng Z. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N Engl J Med 2020 Jan 29. [Epub ahead of print] doi: 10.1056/NEJMoa2001316
CrossRef
Pubmed
Google scholar
|
[43] |
Novel Coronavirus Pneumonia Emergency Response Epidemiology Team. The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) in China. Chin J Epidemiol (Zhonghua Liu Xing Bing Xue Za Zhi) 2020; 41(2): 145–151 (in Chinese)
Pubmed
|
[44] |
Duan K, Liu B, Li C, Zhang H, Yu T, Qu J,
CrossRef
Pubmed
Google scholar
|
[45] |
Chen L, Xiong J, Bao L, Shi Y. Convalescent plasma as a potential therapy for COVID-19. Lancet Infect Dis 2020 Feb 27. [Epub ahead of print] doi: 10.1016/S1473-3099(20)30141-9
CrossRef
Pubmed
Google scholar
|
[46] |
Holshue ML, DeBolt C, Lindquist S, Lofy KH, Wiesman J, Bruce H, Spitters C, Ericson K, Wilkerson S, Tural A, Diaz G, Cohn A, Fox L, Patel A, Gerber SI, Kim L, Tong S, Lu X, Lindstrom S, Pallansch MA, Weldon WC, Biggs HM, Uyeki TM, Pillai SK; Washington State 2019-nCoV Case Investigation Team. First case of 2019 novel coronavirus in the United States. N Engl J Med 2020; 382(10): 929–936
CrossRef
Pubmed
Google scholar
|
[47] |
Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, Zhao X, Huang B, Shi W, Lu R, Niu P, Zhan F, Ma X, Wang D, Xu W, Wu G, Gao GF, Tan W; China Novel Coronavirus Investigating and Research Team. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med 2020; 382(8): 727–733
CrossRef
Pubmed
Google scholar
|
[48] |
Staedtke V, Bai RY, Kim K, Darvas M, Davila ML, Riggins GJ, Rothman PB, Papadopoulos N, Kinzler KW, Vogelstein B, Zhou S. Disruption of a self-amplifying catecholamine loop reduces cytokine release syndrome. Nature 2018; 564(7735): 273–277
CrossRef
Pubmed
Google scholar
|
[49] |
London NR, Zhu W, Bozza FA, Smith MCP, Greif DM, Sorensen LK,
CrossRef
Google scholar
|
[50] |
Liu X, Li Z, Liu S, Chen Z, Zhao Z, Huang YY,
CrossRef
Google scholar
|
[51] |
Pfaender S, Mar KB, Michailidis E, Kratzel A, Hirt D, V’kovski P,
CrossRef
Google scholar
|
[52] |
Wu C, Liu Y, Yang Y, Zhang P, Zhong W, Wang Y, Wang Q, Xu Y, Li M, Li X, Zheng M, Chen L, Li H. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm Sin B 2020 Feb 27. [Epub ahead of print] doi:10.1016/j.apsb.2020.02.008
CrossRef
Google scholar
|
[53] |
Rimanshee A, Amit D, Vishal P, Mukesh K. Potential inhibitors against papain-like protease of novel coronavirus (SARS-CoV-2) from FDA approved drugs. ChemRxiv 2020; doi: 10.26434/chemrxiv.11860011.v2
CrossRef
Google scholar
|
[54] |
Tahir ulQamar M, Alqahtani S, Alamri M, Chen L. Structural basis of SARS-CoV-2 3CLpro and anti-COVID-19 drug discovery from medicinal plants. Preprints 2020; 2020020193
|
[55] |
Cao B, Wang Y, Wen D, Liu W, Wang J, Fan G, Ruan L, Song B, Cai Y, Wei M, Li X, Xia J, Chen N, Xiang J, Yu T, Bai T, Xie X, Zhang L, Li C, Yuan Y, Chen H, Li H, Huang H, Tu S, Gong F, Liu Y, Wei Y, Dong C, Zhou F, Gu X, Xu J, Liu Z, Zhang Y, Li H, Shang L, Wang K, Li K, Zhou X, Dong X, Qu Z, Lu S, Hu X, Ruan S, Luo S, Wu J, Peng L, Cheng F, Pan L, Zou J, Jia C, Wang J, Liu X, Wang S, Wu X, Ge Q, He J, Zhan H, Qiu F, Guo L, Huang C, Jaki T, Hayden FG, Horby PW, Zhang D, Wang C. A trial of lopinavir-ritonavir in adults hospitalized with severe COVID-19. N Engl J Med 2020 Mar 18. [Epub ahead of print] doi: 10.1056/NEJMoa2001282
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |