Chinmedomics facilitated quality-marker discovery of Sijunzi decoction to treat spleen qi deficiency syndrome
Qiqi Zhao, Xin Gao, Guangli Yan, Aihua Zhang, Hui Sun, Ying Han, Wenxiu Li, Liang Liu, Xijun Wang
Chinmedomics facilitated quality-marker discovery of Sijunzi decoction to treat spleen qi deficiency syndrome
Sijunzi decoction (SJZD) is a Chinese classical formula to treat spleen qi deficiency syndrome (SQDS) and has been widely used for thousands of years. However, the quality control (QC) standards of SJZD are insufficient. Chinmedomics has been designed to discover and verify bioactive compounds of a variety of formula rapidly. In this study, we used Chinmedomics to evaluate the SJZD’s efficacy against SQDS to discover the potential quality-markers (q-markers) for QC. A total of 56 compounds in SJZD were characterized in vitro, and 23 compounds were discovered in vivo. A total of 58 biomarkers were related to SQDS, and SJZD can adjust a large proportion of marker metabolites to normal level and then regulate the metabolic profile to the health status. A total of 10 constituents were absorbed as effective ingredients that were associated with overall efficacy. We preliminarily determined malonyl-ginsenoside Rb2 and ginsenoside Ro as the q-markers of ginseng; dehydrotumulosic acid and dihydroxy lanostene-triene-21-acid as the q-markers of poria; glycyrrhizic acid, isoglabrolide, and glycyrrhetnic acid as the q-markers of licorice; and 2-atractylenolide as the q-marker of macrocephala. According to the discovery of the SJZD q-markers, we can establish the quality standard that is related to efficacy.
traditional Chinese medicine / Sijunzi decoction / spleen qi deficiency syndrome / Chinmedomics / quality-marker
[1] |
Hu J, Liu B. The basic theory, diagnostic, and therapeutic system of traditional Chinese medicine and the challenges they bring to statistics. Stat Med 2012; 31(7): 602–605
CrossRef
Pubmed
Google scholar
|
[2] |
Liu X, Fu J, Fan T, Liu W, Jiang H, Zhang R, Ding H, Yang H, Hu S, Huang Y, Li G, Lan Y, She B, Mao B. The efficacy and safety of Shen Guo Lao Nian Granule for common cold of qi-deficiency syndrome: study protocol for a randomized, double-blind, placebo-controlled, multicenter, phase II clinical trial. Evid Based Complement Alternat Med 2017; 2017(6): 1806461
CrossRef
Pubmed
Google scholar
|
[3] |
Shu Q, Sun D, Wang H, Liang F, Gerhard L, Daniela L, Ingrid G, Chen L, He W, Wang Y. Differences of acupuncture and moxibustion on heart rate variability in qi-deficiency syndrome:a randomized controlled trial. Chin Acup Moxib (Zhongguo Zhen Jiu) 2017; 37(1): 25–30 (in Chinese)
Pubmed
|
[4] |
Xu D, Shen Z, Wang W. Immunoregulation of Youguiyin, Sijunzitang, Taohong Siwutang in treating patients with deficiency of kidney, spleen and blood stasis syndrome. Chin J Integr Trad West Med (Zhongguo Zhong Xi Yi Jie He Za Zhi) 1999; 19(12): 712–714 (in Chinese)
Pubmed
|
[5] |
Hu Q, Calduch RM. On traditional Chinese medicine regulation in China: how quality and safety of use are insured. Pharmacol Res 2017; 119: 371–372
CrossRef
Pubmed
Google scholar
|
[6] |
Wang G, Mao B, Xiong ZY, Fan T, Chen XD, Wang L, Liu GJ, Liu J, Guo J, Chang J, Wu TX, Li TQ; CONSORT Group for Traditional Chinese Medicine. The quality of reporting of randomized controlled trials of traditional Chinese medicine: a survey of 13 randomly selected journals from mainland China. Clin Ther 2007; 29(7): 1456–1467
CrossRef
Pubmed
Google scholar
|
[7] |
Ning Z, Lu C, Zhang Y, Zhao S, Liu B, Xu X, Liu Y. Application of plant metabonomics in quality assessment for large-scale production of traditional Chinese medicine. Planta Med 2013; 79(11): 897–908
CrossRef
Pubmed
Google scholar
|
[8] |
Cheng TF, Jia YR, Zuo Z, Dong X, Zhou P, Li P, Li F. Quality assessment of traditional Chinese medicine herb couple by high-performance liquid chromatography and mass spectrometry combined with Chemometrics. J Sep Sci 2016; 39(7): 1223–1231
CrossRef
Pubmed
Google scholar
|
[9] |
Wang C, Hu S, Chen X, Bai X. Screening and quantification of anticancer compounds in traditional Chinese medicine by hollow fiber cell fishing and hollow fiber liquid/solid-phase microextraction. J Sep Sci 2016; 39(10): 1814–1824
CrossRef
Pubmed
Google scholar
|
[10] |
Zhuo L, Peng J, Zhao Y, Li D, Xie X, Tong L, Yu Z. Screening bioactive quality control markers of QiShenYiQi dripping pills based on the relationship between the ultra-high performance liquid chromatography fingerprint and vascular protective activity. J Sep Sci 2017; 40(20): 4076–4084
CrossRef
Pubmed
Google scholar
|
[11] |
Wang X, Zhang A, Sun H, Yan G. Precision diagnosis of Chinese medicine syndrome and evaluation of prescription efficacy based on Chinmedomics. Modernization Tradit Chin Med Materia Medica—World Sci Technol (Shi Jie Ke Xue Ji Shu— Zhong Yi Yao Xian Dai Hua) 2017; 19(1): 30–34 (in Chinese)
|
[12] |
Zhang A, Sun H, Yan G, Wang P, Han Y, Wang X J. Chinmedomics: a new strategy for research of traditional Chinese medicine. China J Chin Materia Medica (Zhongguo Zhong Yao Za Zhi) 2015; 40(4): 569–576 (in Chinese)
|
[13] |
Wang H, Shi S, Wang S. Can highly cited herbs in ancient traditional Chinese medicine formulas and modern publications predict therapeutic targets for diabetes mellitus? J Ethnopharmacol 2018; 213: 101–110
CrossRef
Pubmed
Google scholar
|
[14] |
Wang X, Zhang A, Sun H. Future perspectives of Chinese medical formulae: Chinmedomics as an effector. OMICS 2012; 16(7-8): 414–421
CrossRef
Pubmed
Google scholar
|
[15] |
Wang X, Zhang A, Hui S, Han Y, Yan G. Discovery and development of innovative drug from traditional medicine by integrated Chinmedomics strategies in the post-genomic era. Trends Analyt Chem 2016; 76: 86–94
CrossRef
Google scholar
|
[16] |
Li XN, Zhang A, Wang M, Sun H, Liu Z, Qiu S, Zhang T, Wang X. Screening the active compounds of Phellodendri amurensis cortex for treating prostate cancer by high-throughput Chinmedomics. Sci Rep 2017; 7(1): 46234
CrossRef
Pubmed
Google scholar
|
[17] |
Zhou XH, Zhang AH, Wang L, Tan YL, Guan Y, Han Y, Sun H, Wang XJ. Novel Chinmedomics strategy for discovering effective constituents from ShenQiWan acting on ShenYangXu syndrome. Chin J Nat Med 2016; 14(8): 561–581
Pubmed
|
[18] |
Wang X, Zhang A, Zhou X, Liu Q, Nan Y, Guan Y, Kong L, Han Y, Sun H, Yan G. An integrated Chinmedomics strategy for discovery of effective constituents from traditional herbal medicine. Sci Rep 2016; 6(1): 18997
CrossRef
Pubmed
Google scholar
|
[19] |
Liu F, Liu Y, Tian C. Effect of Rhizoma Atractylodis extract in protecting gastric mucosa and modulating gastrointestinal immune function in a rat model of spleen deficiency. J Southern Med Univ (Nan Fang Yi Ke Da Xue Xue Bao) 2015; 35(3): 343–347, 354 (in Chinese)
Pubmed
|
[20] |
Lu S, Han Y, Chu H, Kong L, Zhang A, Yan G, Sun H, Wang P, Wang X. Characterizing serum metabolic alterations of Alzheimer’s disease and intervention of Shengmai-San by ultra-performance liquid chromatography/electrospray ionization quadruple time-of-flight mass spectrometry. Food Funct 2017; 8(4): 1660–1671
CrossRef
Pubmed
Google scholar
|
[21] |
Zhao Q, Zhang A, Zong W, An N, Zhang H, Luan Y, Sun H, Wang X, Cao H. Exploring potential biomarkers and determining the metabolic mechanism of type 2 diabetes mellitus using liquid chromatography coupled to high-resolution mass spectrometry. RSC Adv 2017; 7(70): 44186–44198
CrossRef
Google scholar
|
[22] |
de Passillé AM, Pelletier G, Ménard J, Morisset J. Relationships of weight gain and behavior to digestive organ weight and enzyme activities in piglets. J Anim Sci 1989; 67(11): 2921–2929
CrossRef
Pubmed
Google scholar
|
[23] |
Tharakan A, Norton IT, Fryer PJ, Bakalis S. Mass transfer and nutrient absorption in a simulated model of small intestine. J Food Sci 2010; 75(6): E339–E346
CrossRef
Pubmed
Google scholar
|
[24] |
Clara R, Schumacher M, Ramachandran D, Fedele S, Krieger JP, Langhans W, Mansouri A. Metabolic adaptation of the small intestine to short- and medium-term high-fat diet exposure. J Cell Physiol 2017; 232(1): 167–175
CrossRef
Pubmed
Google scholar
|
[25] |
Mansi C, Borro P, Giacomini M, Biagini R, Mele MR, Pandolfo N, Savarino V. Comparative effects of levosulpiride and cisapride on gastric emptying and symptoms in patients with functional dyspepsia and gastroparesis. Aliment Pharmacol Ther 2000; 14(5): 561–569
CrossRef
Pubmed
Google scholar
|
[26] |
Tortora GJ, Anagnostakos NP. Principles of anatomy and physiology. J Anat 2009; 86(10): 555
|
[27] |
Zhang SY, Peng GY, Gu LG, Li ZM, Yin SJ. Effect and mechanisms of Gong-tone music on the immunological function in rats with Liver (Gan)-qi depression and Spleen (Pi)-qi deficiency syndrome in rats. Chin J Integr Med 2013; 19(3): 212–216
CrossRef
Pubmed
Google scholar
|
[28] |
Itoh Z, Takeuchi S, Aizawa I, Mori K, Taminato T, Seino Y, Imura H, Yanaihara N. Changes in plasma motilin concentration and gastrointestinal contractile activity in conscious dogs. Am J Dig Dis 1978; 23(10): 929–935
CrossRef
Pubmed
Google scholar
|
[29] |
Liu Q, Cai G. Content of somatostatin and cholecystokinin-8 in hypothalamus and colons in a rat model of spleen-deficiency syndrome. J Chin Integr Med (Zhong Xi Yi Jie He Xue Bao) 2007; 5(5): 555–558 (in Chinese)
CrossRef
Pubmed
Google scholar
|
[30] |
Yong RL, Qu Y, Li XX, Wang JB, Xue YN, Zhang LD. Effect of electroacupuncture at “Zusanli”(ST 36) on the expression of Ghrelin/cAMP/PKA in the Jejunum in rats with spleen Qi deficiency syndrome. Acupunct Res (Zhen Ci Yan Jiu) 2016; 41(6): 497–501 (in Chinese)
Pubmed
|
[31] |
Chan K, Leung K, Lu G. Quality and safety should go hand in hand to monitor herbal products: examples from Chinese medicinal materials (CMM). Planta Med 2007; 73(9): 803
CrossRef
Google scholar
|
[32] |
Duan YQ, Cheng YX, Liang YJ, Cheng WD, Du J, Yang XY, Wang Y. Intervention of qi-activating and spleen-strengthening herbs on Ca2+/CaMK II signaling pathways key factors in skeletal muscle tissue of rats with spleen-qi deficiency. J Chin Med Mater (Zhong Yao Cai) 2015; 38(3): 562–566 (in Chinese)
Pubmed
|
[33] |
Zheng XF, Tian JS, Liu P, Xing J, Qin XM. Analysis of the restorative effect of Bu-zhong-yi-qi-tang in the spleen-qi deficiency rat model using 1H-NMR-based metabonomics. J Ethnopharmacol 2014; 151(2): 912–920
CrossRef
Pubmed
Google scholar
|
[34] |
Sun H, Zhang AH, Yang L, Li MX, Fang H, Xie J, Wang XJ. High-throughput chinmedomics strategy for discovering the quality-markers and potential targets for Yinchenhao decoction. Phytomedicine 2019; 54: 328–338
CrossRef
Pubmed
Google scholar
|
[35] |
Zhao S, Liu Z, Wang M, He D, Liu L, Shu Y, Song Z, Li H, Liu Y, Lu A. Anti-inflammatory effects of Zhishi and Zhiqiao revealed by network pharmacology integrated with molecular mechanism and metabolomics studies. Phytomedicine 2018; 50: 61–72
CrossRef
Pubmed
Google scholar
|
[36] |
Yuan Z, Zhong L, Hua Y, Ji P, Yao W, Ma Q, Zhang X, Wen Y, Yang L, Wei Y. Metabolomics study on promoting blood circulation and ameliorating blood stasis: investigating the mechanism of Angelica sinensis and its processed products. Biomed Chromatogr 2019; 33(4): e4457
CrossRef
Pubmed
Google scholar
|
[37] |
Wu P, Li J, Zhang X, Zeng F, Liu Y, Sun W. Study of the treatment effects of compound Tufuling Granules in hyperuricemic rats using serum metabolomics. Evid Based Complement Alternat Med 2018; 2018: 3458185
CrossRef
Pubmed
Google scholar
|
[38] |
Dong Y, Qiu P, Zhao L, Zhang P, Huang X, Li C, Chai K, Shou D. Metabolomics study of the hepatoprotective effect of Phellinus igniarius in chronic ethanol-induced liver injury mice using UPLC-Q/TOF-MS combined with ingenuity pathway analysis. Phytomedicine2018 Oct 2. 152697.
CrossRef
Pubmed
Google scholar
|
[39] |
Tripathi N, Shrivastava D, Ahmad Mir B, Kumar S, Govil S, Vahedi M, Bisen PS. Metabolomic and biotechnological approaches to determine therapeutic potential of Withania somnifera (L.) Dunal: a review. Phytomedicine 2018; 50: 127–136
CrossRef
Pubmed
Google scholar
|
[40] |
Xu Y, Chen S, Yu T, Qiao J, Sun G. High-throughput metabolomics investigates anti-osteoporosis activity of oleanolic acid via regulating metabolic networks using ultra-performance liquid chromatography coupled with mass spectrometry. Phytomedicine 2018; 51: 68–76
CrossRef
Pubmed
Google scholar
|
[41] |
Duan L, Guo L, Wang L, Yin Q, Zhang CM, Zheng YG, Liu EH. Application of metabolomics in toxicity evaluation of traditional Chinese medicines. Chin Med 2018; 13(1): 60
CrossRef
Pubmed
Google scholar
|
[42] |
Wang X, Zhang S, Zhang A, Yan G, Wu X, Han Y, Sun H. Metabolomics study of type 2 diabetes and therapeutic effects of Tianqijiangtang-capsule using ultra-performance liquid chromatography/electrospray ionization quadruple time-of-flight mass spectrometry. Anal Methods 2013; 5(9): 2218–2226
CrossRef
Google scholar
|
[43] |
Zhang Y, Klaassen CD. Effects of feeding bile acids and a bile acid sequestrant on hepatic bile acid composition in mice. J Lipid Res 2010; 51(11): 3230–3242
CrossRef
Pubmed
Google scholar
|
[44] |
Roberts AB, Frolik CA, Nichols MD, Sporn MB. Retinoid-dependent induction of the in vivo and in vitro metabolism of retinoic acid in tissues of the vitamin A-deficient hamster. J Biol Chem 1979; 254(14): 6303–6309
Pubmed
|
[45] |
Hall JA, Grainger JR, Spencer SP, Belkaid Y. The role of retinoic acid in tolerance and immunity. Immunity 2011; 35(1): 13–22
CrossRef
Pubmed
Google scholar
|
[46] |
Wang XJ. Progress and future developing of the serum pharmacochemistry of traditional Chinese medicine. China J Chin Mater Med (Zhongguo Zhong Yao Za Zhi) 2006; 31(10): 789–792, 835 (in Chinese)
Pubmed
|
[47] |
Zhang AH, Yu JB, Sun H, Kong L, Wang XQ, Zhang QY, Wang XJ. Identifying quality-markers from Shengmai San protects against transgenic mouse model of Alzheimer’s disease using Chinmedomics approach. Phytomedicine 2018; 45: 84–92
CrossRef
Pubmed
Google scholar
|
[48] |
Sun H, Zhang AH, Song Q, Fang H, Liu XY, Su J, Yang L, Yu MD, Wang XJ. Functional metabolomics discover pentose and glucuronate interconversion pathways as promising targets for Yang Huang syndrome treatment with Yinchenhao Tang. RSC Adv 2018; 8(64): 36831–36839
CrossRef
Google scholar
|
[49] |
Zhang AH, Sun H, Yan GL, Zhao QQ, Wang XJ. Chinmedomics: a powerful approach integrating metabolomics with serum pharmacochemistry to evaluate the efficacy of traditional Chinese medicine. Engineering (Beijing) 2019; 5(1): 60–68
CrossRef
Google scholar
|
[50] |
Wang XJ, Lv HT, Zhang AH, Sun WJ, Liu L, Wang P, Wu ZM, Zou DX, Sun H. Metabolite profiling and pathway analysis of acute hepatitis rats by UPLC-ESI MS combined with pattern recognition methods. Liver Int 2014; 34(5): 759–770
CrossRef
Pubmed
Google scholar
|
[51] |
Zhang AH, Sun H, Xu HY, Qiu S, Wang XJ. Cell metabolomics. OMICS 2013; 17(10): 495–501
CrossRef
Pubmed
Google scholar
|
[52] |
Sun H, Zhang AH, Liu SB, Qiu S, Li XN, Zhang TL, Liu L, Wang XJ. Cell metabolomics identify regulatory pathways and targets of magnoline against prostate cancer. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1102–1103: 143–151
CrossRef
Pubmed
Google scholar
|
[53] |
Zhang AH, Sun H, Wang XJ. Urinary metabolic profiling of rat models revealed protective function of scoparone against alcohol induced hepatotoxicity. Sci Rep 2015; 4(1): 6768
CrossRef
Pubmed
Google scholar
|
[54] |
Liu XY, Zhang AH, Fang H, Li MX, Song Q, Su J, Yu MD, Yang L, Wang XJ. Serum metabolomics strategy for understanding the therapeutic effects of Yin-Chen-Hao-Tang against Yanghuang syndrome. RSC Adv 2018; 8(14): 7403–7413
CrossRef
Google scholar
|
[55] |
Zhang AH, Sun H, Yan GL, Yuan Y, Han Y, Wang XJ. Metabolomics study of type 2 diabetes using ultra-performance LC-ESI/quadrupole-TOF high-definition MS coupled with pattern recognition methods. J Physiol Biochem 2014; 70(1): 117–128
CrossRef
Pubmed
Google scholar
|
[56] |
Song Q, Zhang AH, Yan GL, Liu L, Wang XJ. Technological advances in current metabolomics and its application in tradition Chinese medicine. RSC Adv 2017; 7(84): 53516–53524
CrossRef
Google scholar
|
[57] |
Zhang AH, Sun H, Sun WJ, Wang XJ. Metabolomics and Proteomics Annotate Therapeutic Mechanisms of Geniposide[M]//Chinmedomics. Amsterdam: Academic Press, 2015: 157–173
|
[58] |
Zhao QQ, Zhang AH, Zong WJ, An N, Zhang HM, Luan YH, Cao HX, Sun H, Wang XJ. Chemometrics strategy coupled with high resolution mass spectrometry for analyzing and interpreting comprehensive metabolomic characterization of hyperlipemia. RSC Adv 2016; 6(113): 112534–112543
CrossRef
Google scholar
|
[59] |
Wang XJ, Han Y, Zhang AH, Sun H. Metabolic profiling provides a system for the understanding of Alzheimer’s disease in rats post-treatment with Kaixin San[M]//Chinmedomics. Amsterdam: Academic Press, 2015: 347–362
|
[60] |
Zhang AH, Wang HY, Sun H, Zhang Y, An N, Yan GL, Meng XC, Wang XJ. Metabolomics strategy reveals therapeutical assessment of limonin on nonbacterial prostatitis. Food Funct 2015; 6(11): 3540–3549
CrossRef
Pubmed
Google scholar
|
[61] |
Ren JL, Zhang AH, Kong L, Wang XJ. Advances in mass spectrometry-based metabolomics for investigation of metabolites. RSC Adv 2018; 8(40): 22335–22350
CrossRef
Google scholar
|
[62] |
Zhang AH, Sun H, Wang XJ. Mass spectrometry-driven drug discovery for development of herbal medicine. Mass Spectrom Rev 2018; 37(3): 307–320
CrossRef
Pubmed
Google scholar
|
[63] |
Sun H, Wang M, Zhang AH, Ni B, Dong H, Wang XJ. UPLC-Q-TOF-HDMS analysis of constituents in the root of two kinds of Aconitum using a metabolomics approach. Phytochem Anal 2013; 24(3): 263–276
CrossRef
Pubmed
Google scholar
|
[64] |
Wu FF, Sun H, Wei WF, Han Y, Wang P, Dong TW, Yan GL, Wang XJ. Rapid and global detection and characterization of the constituents in ShengMai San by ultra-performance liquid chromatography-high-definition mass spectrometry. J Sep Sci 2011; 34(22): 3194–3199
CrossRef
Pubmed
Google scholar
|
[65] |
Wang XJ, Zhang AH, Sun H, Han Y, Yan GL. Discovery and development of innovative drug from traditional medicine by integrated Chinmedomics strategies in the post-genomic era. TrAC Trends in Analytical Chemistry 2016; 76: 86–94
CrossRef
Google scholar
|
[66] |
Zhang AH, Sun H, Qiu S, Wang XJ. Advancing drug discovery and development from active constituents of Yinchenhao Tang, a famous traditional Chinese medicine formula. Evid Based Complement Alternat Med 2013; 2013: 257909
CrossRef
Pubmed
Google scholar
|
[67] |
Wang XJ, Wang QQ, Zhang AH, Zhang FM, Zhang H, Sun H, Cao HX, Zhang HM. Metabolomics study of intervention effects of Wen-Xin-Formula using ultra high-performance liquid chromatography/mass spectrometry coupled with pattern recognition approach. J Pharm Biomed Anal 2013; 74: 22–30
CrossRef
Pubmed
Google scholar
|
[68] |
Dong W, Wang P, Meng XC, Sun H, Zhang AH, Wang WM, Dong H, Wang XJ. Ultra-performance liquid chromatography-high-definition mass spectrometry analysis of constituents in the root of Radix Stemonae and those absorbed in blood after oral administration of the extract of the crude drug. Phytochem Anal 2012; 23(6): 657–667
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |