Positive stool culture could predict the clinical outcomes of haploidentical hematopoietic stem cell transplantation
Lijuan Hu, Qi Wang, Xiaohui Zhang, Lanping Xu, Yu Wang, Chenhua Yan, Huan Chen, Yuhong Chen, Kaiyan Liu, Hui Wang, Xiaojun Huang, Xiaodong Mo
Positive stool culture could predict the clinical outcomes of haploidentical hematopoietic stem cell transplantation
We aimed to identify the effect of positive stool cultures (PSCs) on the clinical outcomes of patients undergoing haploidentical hematopoietic stem cell transplantation (haplo-HSCT) (n = 332). PSCs were observed in 61 patients (PSC group, 18.4%). Enterobacteriaceae in stool specimens was associated with a higher risk of bloodstream infection, and Candida in stool specimens was related to a higher risk of platelet engraftment failure. The cumulative incidence of infection-related mortality 1 year after haplo-HSCT in the PSC group was higher than that of the patients who showed persistently negative stool cultures (NSC group; 19.2% vs. 8.9%, P = 0.017). The probabilities of overall survival (71.4% vs. 83.8%, P = 0.031) and disease-free survival (69.6% vs. 81.0%, P = 0.048) 1 year after haplo-HSCT for the PSC group were significantly lower than those for the NSC group, particularly for patients who had Candida in their stool specimens. In multivariate analysis, Candida in stool specimens significantly increased the risk of mortality and was associated with poorer survival. Our results showed that PSC influenced the clinical outcomes after haplo-HSCT, particularly those who had Candida in their stool specimens.
haploidentical / hematopoietic stem cell transplantation / stool culture / Candida
[1] |
Lv M, Huang XJ. Allogeneic hematopoietic stem cell transplantation in China: where we are and where to go. J Hematol Oncol 2012; 5(1): 10
CrossRef
Pubmed
Google scholar
|
[2] |
Wang Y, Liu QF, Xu LP, Liu KY, Zhang XH, Ma X, Fan ZP, Wu DP, Huang XJ. Haploidentical vs. identical-sibling transplant for AML in remission: a multicenter, prospective study. Blood 2015; 125(25): 3956–3962
CrossRef
Pubmed
Google scholar
|
[3] |
Wang Y, Liu QF, Xu LP, Liu KY, Zhang XH, Ma X, Wu MQ, Wu DP, Huang XJ. Haploidentical versus matched-sibling transplant in adults with Philadelphia-negative high-risk acute lymphoblastic leukemia: a biologically phase III randomized study. Clin Cancer Res 2016; 22(14): 3467–3476
CrossRef
Pubmed
Google scholar
|
[4] |
Wang Y, Wang HX, Lai YR, Sun ZM, Wu DP, Jiang M, Liu DH, Xu KL, Liu QF, Liu L, Wang JB, Gao F, Ou-Yang J, Gao SJ, Xu LP, Huang XJ. Haploidentical transplant for myelodysplastic syndrome: registry-based comparison with identical sibling transplant. Leukemia 2016; 30(10): 2055–2063
CrossRef
Pubmed
Google scholar
|
[5] |
Xu LP, Wu DP, Han MZ, Huang H, Liu QF, Liu DH, Sun ZM, Xia LH, Chen J, Wang HX, Wang C, Li CF, Lai YR, Wang JM, Zhou DB, Chen H, Song YP, Liu T, Liu KY, Huang XJ. A review of hematopoietic cell transplantation in China: data and trends during 2008–2016. Bone Marrow Transplant 2017; 52(11): 1512–1518
CrossRef
Pubmed
Google scholar
|
[6] |
Xu L, Chen H, Chen J, Han M, Huang H, Lai Y, Liu D, Liu Q, Liu T, Jiang M, Ren H, Song Y, Sun Z, Wang J, Wu D, Zhou D, Zou P, Liu K, Huang X. The consensus on indications, conditioning regimen, and donor selection of allogeneic hematopoietic cell transplantation for hematological diseases in China-recommendations from the Chinese Society of Hematology. J Hematol Oncol 2018; 11(1): 33
CrossRef
Pubmed
Google scholar
|
[7] |
Huang XJ, Chang YJ. Unmanipulated HLA-mismatched/haploidentical blood and marrow hematopoietic stem cell transplantation. Biol Blood Marrow Transplant 2011; 17(2): 197–204
CrossRef
Pubmed
Google scholar
|
[8] |
Fuchs EJ. HLA-haploidentical blood or marrow transplantation with high-dose, post-transplantation cyclophosphamide. Bone Marrow Transplant 2015; 50(S2 Suppl 2): S31–S36
CrossRef
Pubmed
Google scholar
|
[9] |
Scher JU, Sczesnak A, Longman RS, Segata N, Ubeda C, Bielski C, Rostron T, Cerundolo V, Pamer EG, Abramson SB, Huttenhower C, Littman DR. Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis. eLife 2013; 2: e01202
CrossRef
Pubmed
Google scholar
|
[10] |
Smith MI, Yatsunenko T, Manary MJ, Trehan I, Mkakosya R, Cheng J, Kau AL, Rich SS, Concannon P, Mychaleckyj JC, Liu J, Houpt E, Li JV, Holmes E, Nicholson J, Knights D, Ursell LK, Knight R, Gordon JI. Gut microbiomes of Malawian twin pairs discordant for kwashiorkor. Science 2013; 339(6119): 548–554
CrossRef
Pubmed
Google scholar
|
[11] |
Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, Sogin ML, Jones WJ, Roe BA, Affourtit JP, Egholm M, Henrissat B, Heath AC, Knight R, Gordon JI. A core gut microbiome in obese and lean twins. Nature 2009; 457(7228): 480–484
CrossRef
Pubmed
Google scholar
|
[12] |
Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, Liang S, Zhang W, Guan Y, Shen D, Peng Y, Zhang D, Jie Z, Wu W, Qin Y, Xue W, Li J, Han L, Lu D, Wu P, Dai Y, Sun X, Li Z, Tang A, Zhong S, Li X, Chen W, Xu R, Wang M, Feng Q, Gong M, Yu J, Zhang Y, Zhang M, Hansen T, Sanchez G, Raes J, Falony G, Okuda S, Almeida M, LeChatelier E, Renault P, Pons N, Batto JM, Zhang Z, Chen H, Yang R, Zheng W, Li S, Yang H, Wang J, Ehrlich SD, Nielsen R, Pedersen O, Kristiansen K, Wang J. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 2012; 490(7418): 55–60
CrossRef
Pubmed
Google scholar
|
[13] |
Docampo MD, Auletta JJ, Jenq RR. Emerging influence of the intestinal microbiota during allogeneic hematopoietic cell transplantation: control the gut and the body will follow. Biol Blood Marrow Transplant 2015; 21(8): 1360–1366
CrossRef
Pubmed
Google scholar
|
[14] |
Shono Y, van den Brink MRM. Gut microbiota injury in allogeneic haematopoietic stem cell transplantation. Nat Rev Cancer 2018; 18(5): 283–295
CrossRef
Pubmed
Google scholar
|
[15] |
Huang XJ, Liu DH, Liu KY, Xu LP, Chen H, Han W, Chen YH, Zhang XH, Lu DP. Treatment of acute leukemia with unmanipulated HLA-mismatched/haploidentical blood and bone marrow transplantation. Biol Blood Marrow Transplant 2009; 15(2): 257–265
CrossRef
Pubmed
Google scholar
|
[16] |
Wang Y, Liu DH, Liu KY, Xu LP, Zhang XH, Han W, Chen H, Chen YH, Wang FR, Wang JZ, Sun YQ, Huang XJ. Long-term follow-up of haploidentical hematopoietic stem cell transplantation without in vitro T cell depletion for the treatment of leukemia: nine years of experience at a single center. Cancer 2013; 119(5): 978–985
CrossRef
Pubmed
Google scholar
|
[17] |
Huang XJ, Liu DH, Liu KY, Xu LP, Chen H, Han W, Chen YH, Wang JZ, Gao ZY, Zhang YC, Jiang Q, Shi HX, Lu DP. Haploidentical hematopoietic stem cell transplantation without in vitro T-cell depletion for the treatment of hematological malignancies. Bone Marrow Transplant 2006; 38(4): 291–297
CrossRef
Pubmed
Google scholar
|
[18] |
Mo XD, Zhang XH, Xu LP, Wang Y, Yan CH, Chen H, Chen YH, Han W, Wang FR, Wang JZ, Liu KY, Huang XJ. Late-onset severe pneumonia after allogeneic hematopoietic stem cell transplantation: prognostic factors and treatments. Transpl Infect Dis 2016; 18(4): 492–503
CrossRef
Pubmed
Google scholar
|
[19] |
Armand P, Kim HT, Logan BR, Wang Z, Alyea EP, Kalaycio ME, Maziarz RT, Antin JH, Soiffer RJ, Weisdorf DJ, Rizzo JD, Horowitz MM, Saber W. Validation and refinement of the Disease Risk Index for allogeneic stem cell transplantation. Blood 2014; 123(23): 3664–3671
CrossRef
Pubmed
Google scholar
|
[20] |
Przepiorka D, Weisdorf D, Martin P, Klingemann HG, Beatty P, Hows J, Thomas ED. 1994 Consensus Conference on Acute GVHD Grading. Bone Marrow Transplant 1995; 15(6): 825–828
Pubmed
|
[21] |
Gooley TA, Leisenring W, Crowley J, Storer BE. Estimation of failure probabilities in the presence of competing risks: new representations of old estimators. Stat Med 1999; 18(6): 695–706
CrossRef
Pubmed
Google scholar
|
[22] |
Huisman C, van der Straaten HM, Canninga-van Dijk MR, Fijnheer R, Verdonck LF. Pulmonary complications after T-cell-depleted allogeneic stem cell transplantation: low incidence and strong association with acute graft-versus-host disease. Bone Marrow Transplant 2006; 38(8): 561–566
CrossRef
Pubmed
Google scholar
|
[23] |
Chen CS, Boeckh M, Seidel K, Clark JG, Kansu E, Madtes DK, Wagner JL, Witherspoon RP, Anasetti C, Appelbaum FR, Bensinger WI, Deeg HJ, Martin PJ, Sanders JE, Storb R, Storek J, Wade J, Siadak M, Flowers ME, Sullivan KM. Incidence, risk factors, and mortality from pneumonia developing late after hematopoietic stem cell transplantation. Bone Marrow Transplant 2003; 32(5): 515–522
CrossRef
Pubmed
Google scholar
|
[24] |
Krowka MJ, Rosenow EC 3rd, Hoagland HC. Pulmonary complications of bone marrow transplantation. Chest 1985; 87(2): 237–246
CrossRef
Pubmed
Google scholar
|
[25] |
Chevallier P, Hebia-Fellah I, Planche L, Guillaume T, Bressolette-Bodin C, Coste-Burel M, Rialland F, Mohty M, Imbert-Marcille BM. Human herpes virus 6 infection is a hallmark of cord blood transplant in adults and may participate to delayed engraftment: a comparison with matched unrelated donors as stem cell source. Bone Marrow Transplant 2010; 45(7): 1204–1211
CrossRef
Pubmed
Google scholar
|
[26] |
Mo XD, Yan X, Hu W, Zhang XH, Xu LP, Wang Y, Xu XD, Wang LN, He XX, Yan CH, Chen H, Chen YH, Liu KY, Huang XJ. Perianal infections in the phase before engraftment after allogeneic hematopoietic stem cell transplantations: a study of the incidence, risk factors, and clinical outcomes. Acta Haematol 2018; 139(1): 19–27
CrossRef
Pubmed
Google scholar
|
[27] |
Zhao X, Zhao X, Huo M, Fan Q, Pei X, Wang Y, Zhang X, Xu L, Huang X, Liu K, Chang Y. Donor-specific anti-human leukocyte antigen antibodies predict prolonged isolated thrombocytopenia and inferior outcomes of haploidentical hematopoietic stem cell transplantation. J Immunol Res 2017; 2017: 1043836
CrossRef
Pubmed
Google scholar
|
[28] |
Zollner-Schwetz I, Auner HW, Paulitsch A, Buzina W, Staber PB, Ofner-Kopeinig P, Reisinger EC, Olschewski H, Krause R. Oral and intestinal Candida colonization in patients undergoing hematopoietic stem-cell transplantation. J Infect Dis 2008; 198(1): 150–153
CrossRef
Pubmed
Google scholar
|
[29] |
Nucci M, Anaissie E. Revisiting the source of candidemia: skin or gut? Clin Infect Dis 2001; 33(12): 1959–1967
CrossRef
Pubmed
Google scholar
|
[30] |
Bilinski J, Robak K, Peric Z, Marchel H, Karakulska-Prystupiuk E, Halaburda K, Rusicka P, Swoboda-Kopec E, Wroblewska M, Wiktor-Jedrzejczak W, Basak GW. Impact of gut colonization by antibiotic-resistant bacteria on the outcomes of allogeneic hematopoietic stem cell transplantation: a retrospective, single-center study. Biol Blood Marrow Transplant 2016; 22(6): 1087–1093
CrossRef
Pubmed
Google scholar
|
[31] |
Sadowska-Klasa A, Piekarska A, Prejzner W, Bieniaszewska M, Hellmann A. Colonization with multidrug-resistant bacteria increases the risk of complications and a fatal outcome after allogeneic hematopoietic cell transplantation. Ann Hematol 2018; 97(3): 509–517
CrossRef
Pubmed
Google scholar
|
[32] |
Taur Y, Xavier JB, Lipuma L, Ubeda C, Goldberg J, Gobourne A, Lee YJ, Dubin KA, Socci ND, Viale A, Perales MA, Jenq RR, van den Brink MR, Pamer EG. Intestinal domination and the risk of bacteremia in patients undergoing allogeneic hematopoietic stem cell transplantation. Clin Infect Dis 2012; 55(7): 905–914
CrossRef
Pubmed
Google scholar
|
[33] |
Vossen JM, Heidt PJ, van den Berg H, Gerritsen EJ, Hermans J, Dooren LJ. Prevention of infection and graft-versus-host disease by suppression of intestinal microflora in children treated with allogeneic bone marrow transplantation. Eur J Clin Microbiol Infect Dis 1990; 9(1): 14–23
CrossRef
Pubmed
Google scholar
|
[34] |
Poutsiaka DD, Price LL, Ucuzian A, Chan GW, Miller KB, Snydman DR. Blood stream infection after hematopoietic stem cell transplantation is associated with increased mortality. Bone Marrow Transplant 2007; 40(1): 63–70
CrossRef
Pubmed
Google scholar
|
[35] |
Blennow O, Ljungman P, Sparrelid E, Mattsson J, Remberger M. Incidence, risk factors, and outcome of bloodstream infections during the pre-engraftment phase in 521 allogeneic hematopoietic stem cell transplantations. Transpl Infect Dis 2014; 16(1): 106–114
CrossRef
Pubmed
Google scholar
|
[36] |
Yan CH, Xu T, Zheng XY, Sun J, Duan XL, Gu JL, Zhao CL, Zhu J, Wu YH, Wu DP, Hu JD, Huang H, Jiang M, Li J, Hou M, Wang C, Shao ZH, Liu T, Hu Y, Huang XJ. Epidemiology of febrile neutropenia in patients with hematological disease—a prospective multicentre survey in China. Chin J Hematol (Zhonghua Xue Ye Xue Za Zhi) 2016; 37(3): 177–182 (in Chinese)
Pubmed
|
[37] |
van Bekkum DW, Roodenburg J, Heidt PJ, van der Waaij D. Mitigation of secondary disease of allogeneic mouse radiation chimeras by modification of the intestinal microflora. J Natl Cancer Inst 1974; 52(2): 401–404
CrossRef
Pubmed
Google scholar
|
[38] |
Jones JM, Wilson R, Bealmear PM. Mortality and gross pathology of secondary disease in germfree mouse radiation chimeras. Radiat Res 1971; 45(3): 577–588
CrossRef
Pubmed
Google scholar
|
[39] |
Beelen DW, Elmaagacli A, Müller KD, Hirche H, Schaefer UW. Influence of intestinal bacterial decontamination using metronidazole and ciprofloxacin or ciprofloxacin alone on the development of acute graft-versus-host disease after marrow transplantation in patients with hematologic malignancies: final results and long-term follow-up of an open-label prospective randomized trial. Blood 1999; 93(10): 3267–3275
Pubmed
|
[40] |
Petersen FB, Buckner CD, Clift RA, Nelson N, Counts GW, Meyers JD, Thomas ED. Infectious complications in patients undergoing marrow transplantation: a prospective randomized study of the additional effect of decontamination and laminar air flow isolation among patients receiving prophylactic systemic antibiotics. Scand J Infect Dis 1987; 19(5): 559–567
CrossRef
Pubmed
Google scholar
|
[41] |
Passweg JR, Rowlings PA, Atkinson KA, Barrett AJ, Gale RP, Gratwohl A, Jacobsen N, Klein JP, Ljungman P, Russell JA, Schaefer UW, Sobocinski KA, Vossen JM, Zhang MJ, Horowitz MM. Influence of protective isolation on outcome of allogeneic bone marrow transplantation for leukemia. Bone Marrow Transplant 1998; 21(12): 1231–1238
CrossRef
Pubmed
Google scholar
|
[42] |
Weber D, Jenq RR, Peled JU, Taur Y, Hiergeist A, Koestler J, Dettmer K, Weber M, Wolff D, Hahn J, Pamer EG, Herr W, Gessner A, Oefner PJ, van den Brink MRM, Holler E. Microbiota disruption induced by early use of broad-spectrum antibiotics is an independent risk factor of outcome after allogeneic stem cell transplantation. Biol Blood Marrow Transplant 2017; 23(5): 845–852
CrossRef
Pubmed
Google scholar
|
[43] |
Shono Y, Docampo MD, Peled JU, Perobelli SM, Velardi E, Tsai JJ, Slingerland AE, Smith OM, Young LF, Gupta J, Lieberman SR, Jay HV, Ahr KF, Porosnicu Rodriguez KA, Xu K, Calarfiore M, Poeck H, Caballero S, Devlin SM, Rapaport F, Dudakov JA, Hanash AM, Gyurkocza B, Murphy GF, Gomes C, Liu C, Moss EL, Falconer SB, Bhatt AS, Taur Y, Pamer EG, van den Brink MRM, Jenq RR. Increased GVHD-related mortality with broad-spectrum antibiotic use after allogeneic hematopoietic stem cell transplantation in human patients and mice. Sci Transl Med 2016; 8(339): 339ra71
CrossRef
Pubmed
Google scholar
|
[44] |
Staffas A, Burgos da Silva M, van den Brink MR. The intestinal microbiota in allogeneic hematopoietic cell transplant and graft-versus-host disease. Blood 2017; 129(8): 927–933
CrossRef
Pubmed
Google scholar
|
[45] |
Shallis RM, Terry CM, Lim SH. Changes in intestinal microbiota and their effects on allogeneic stem cell transplantation. Am J Hematol 2018; 93(1): 122–128
CrossRef
Pubmed
Google scholar
|
[46] |
Ubeda C, Taur Y, Jenq RR, Equinda MJ, Son T, Samstein M, Viale A, Socci ND, van den Brink MR, Kamboj M, Pamer EG. Vancomycin-resistant Enterococcus domination of intestinal microbiota is enabled by antibiotic treatment in mice and precedes bloodstream invasion in humans. J Clin Invest 2010; 120(12): 4332–4341
CrossRef
Pubmed
Google scholar
|
[47] |
Taur Y, Jenq RR, Perales MA, Littmann ER, Morjaria S, Ling L, No D, Gobourne A, Viale A, Dahi PB, Ponce DM, Barker JN, Giralt S, van den Brink M, Pamer EG. The effects of intestinal tract bacterial diversity on mortality following allogeneic hematopoietic stem cell transplantation. Blood 2014; 124(7): 1174–1182
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |