Current advances in the elimination of hepatitis B in China by 2030

Shuye Zhang , Fusheng Wang , Zheng Zhang

Front. Med. ›› 2017, Vol. 11 ›› Issue (4) : 490 -501.

PDF (201KB)
Front. Med. ›› 2017, Vol. 11 ›› Issue (4) : 490 -501. DOI: 10.1007/s11684-017-0598-4
REVIEW
REVIEW

Current advances in the elimination of hepatitis B in China by 2030

Author information +
History +
PDF (201KB)

Abstract

With its 78 million chronic carriers, hepatitis B virus (HBV) infection is still one of the leading public health challenges in China. Over the last two decades, China has made great progress on the prevention of HBV transmission through national vaccination programs. Zero transmission from mother to infant has been proposed as the current goal. Available anti-HBV therapy is efficacious in suppressing HBV replication; however, it fails to completely cure patients with chronic hepatitis B and even requires lifelong treatment. To reduce the costs and improve the efficacy, several trials have been recently conducted in China to optimize the current anti-HBV managements. Novel biomarkers were identified to predict treatment outcomes, and new promising treatment strategies were developed. Reports also indicate that coinfections of HBV with other hepatotropic viruses and human immunodeficiency virus are common in China and cause severe liver diseases, which should be recognized early and treated properly. Work is still needed to eliminate hepatitis B in China by 2030.

Keywords

HBV / CHB / biomarker / functional cure / coinfection

Cite this article

Download citation ▾
Shuye Zhang, Fusheng Wang, Zheng Zhang. Current advances in the elimination of hepatitis B in China by 2030. Front. Med., 2017, 11(4): 490-501 DOI:10.1007/s11684-017-0598-4

登录浏览全文

4963

注册一个新账户 忘记密码

Introduction

Infection by the hepatitis B virus (HBV) can cause liver inflammation and injury, liver cirrhosis, or hepatocellular carcinoma (HCC). Despite the worldwide vaccination program, chronic hepatitis B (CHB) is still one of the biggest public health challenges, with an estimated 257 million people living with chronic HBV infection and more than 600 000 related deaths in 2015 [1]. In China, 78 million people are currently estimated to carry the hepatitis B surface antigen (HBsAg), and 28 million of them have active hepatitis and account for nearly one third of all the chronic infections in the world. Every year, approximately 300 000 Chinese die from HBV-related liver cirrhosis and HCC, accounting for 37%–50% of the mortality worldwide [2]. For this reason, China has largely expanded the funding support for HBV research, and many progresses have been made to better understand and control hepatitis B. We will summarize here the achievements in the prevention, diagnosis, and treatment of hepatitis B in China over the last decades.

HBV vaccination campaign successfully reduces the HBV burden in China

Acquisition of HBV in perinatal or early childhood may play a major role in chronic infection, thus, the HBV vaccine should be administered within 24 h at birth. In China, the government has listed HBV vaccination as a priority public health measure [3]. HBV immunization was first introduced in China in 1987 and was recommended for routine vaccination of infants by the Ministry of Health in 1992. However, because of high costs for vaccine purchase and administration, infant vaccination occurred mainly in the wealthier eastern provinces until China launched the Expanded Program of Immunization (EPI) in 2002, when the cost of HBV vaccines was subsidized by the government, whereas administration fees of the vaccinations continued to be charged. Also in 2002, the Ministry of Health initiated a project with the Global Alliance for Vaccines and Immunization (GAVI) to ensure HBV vaccine availability in China’s poorest provinces and counties [4]. This 5-year China–GAVI project provided free HBV vaccines, targeting approximately 5.6 million children born each year in the poor middle-western area, covering approximately 36% of Chinese newborns. In 2005, the new vaccination policy in China abolished all charges and fees for all nationally recommended vaccines, including the hepatitis B vaccine.

For children with none, incomplete, or unknown HBV vaccination history, the Chinese government implemented the catch-up strategies. From 2002 to 2006, 16 provinces carried out the catch-up vaccination for children born from 2002 to 2005 and 8.2 million doses of the HBV vaccine were administered. In 2007, more than 7 million doses were administered to immunize children less than 15 years old in Jiangsu, Qinghai, Zhejiang, Tianjin, and Shandong provinces. From 2009 to 2011, all children less than 15 years of age who were never or incompletely immunized with the HBV vaccine were immunized by the catch-up HBV vaccinations [5].

These HBV immunization strategies were highly successful and have resulted in significantly reduced HBsAg prevalence among young children and prevented approximately 16–20 million HBV carriers. A nationwide HBV seroepidemiological survey conducted in 1992 showed that the HBsAg carrier rate in the whole population was 9.75%, which, by contrast, has declined to 7.18% among those aged 1–60 years in 2006 [6,7]. Of note, because the coverage of the three doses of hepatitis B vaccine in infancy reached more than 95%, it has substantially reduced HBV transmission in newborns, as reflected by the reduction in HBV prevalence to less than 1% among aged<15 years and a prevalence of HBsAg to 0.32% among those aged<5 years [8]. Thus, China has been transferred from a country with high endemicity to one with intermediate or low endemicity.

The neonatal HBV vaccination significantly reduced the risk of primary liver cancer and other liver diseases in young adults in rural China. In a retrospective analysis on a population-based, cluster randomized, controlled trial between 1985 and 1990 in Qidong County, China, the authors included 38 366 newborns who had completed the HBV vaccination series and were randomly assigned to the vaccination group and 34 441 newborns who received neither a vaccine nor a placebo and were randomly assigned to the control group. Based on the intention-to-treat analysis, the incidence rate of primary liver cancer and the mortality rates of severe end-stage liver diseases and infant fulminant hepatitis were significantly lower in the vaccination group than those in the control group with efficacies of 84%, 70%, and 69%, respectively [9]. The findings indicate that HBV vaccine functions as the first-line intervention to prevent liver cancer and end-stage liver disease. However, the global coverage with the initial birth dose vaccination is still low at 39% in 2015 [1]. China needs to maintain the high birth coverage rate of HBV vaccine so as to further decrease HBV-associated liver diseases in the future.

Zero transmission through strengthening the prevention of mother-to-infant transmission (MTIT)

Regarded as the most common HBV transmission route in China, MTIT during the perinatal period usually leads to chronic HBV infection. Standard passive–active immunoprophylaxis with hepatitis B immunoglobulin (HBIG) and hepatitis B vaccine in neonates is highly effective in preventing MTIT, although it is not completely protective [10]. The percentage of prophylactic failure could reach 5%–10% for pregnancies with high levels of HBV load [11]. With around 15 million births occurring annually, approximately 50 000 newborns acquire HBV infection yearly in China, especially those from the hepatitis B e-antigen-positive (HBeAg+) mothers. An increasing body evidence suggests that antiviral treatments may significantly reduce the risk of MTIT among mothers with an HBV DNA level of>6 log10 copies/mL [12]. Pan et al. evaluated the regimen of tenofovir disoproxil fumarate (TDF) treatment among pregnant HBV mothers and found that MTIT was significantly lower in the TDF group than that of the control group, both in the intention-to-treat analysis (with transmission of virus to 5% of the infants [5 of 97] versus 18% [18 of 100]) and the per-protocol analysis (with transmission of virus to 0% versus 7% [6 of 88]). The safety profiles were similar in the TDF group and the control group [13]. Approximately 6% of fertile women have chronic HBV infections in China, thus the antiviral therapy of using TDF with HBIG for HBV-infected mothers will efficiently reduce the risk of MTIT to nearly zero infection rate.

Based on these findings, the Chinese Foundation for Hepatitis Prevention and Control launched the Hepatitis B Shield Project in 2015, which aims to set up a network to break down the barriers among hepatologists, general practitioners, gynecologists, and HBV-infected mothers. A mobile app as an educational tool is first on trial in ten key centers; afterwards, it will be introduced to other hospitals across the country. Next, the clinical trial will compare the HBV MTIT rate between mothers who are using the Shield app and those who are not. These actions will bring China closer to the HBV-free generation in the near future [14].

Current antiviral treatment in patients with CHB is being improved

The long-term outcome of HBV infection varies from minimal hepatic inflammation to extensive fibrosis, cirrhosis, and HCC. In China, CHB is the leading cause of cirrhosis and HCC, leading to high morbidity and mortality, posing heavy burden to the society and patients. Sustained suppression of serum HBV DNA by antiviral treatments improves the quality of life, prevents liver disease progression, and reduces mortality. However, the generally low income in China has been a major barrier for urgent treatment. The data of the China Registry of Hepatitis B shows that only 2.8 million (10%) of patients with CHB are currently receiving the needed treatment. In addition, drugs with low antiviral potency or low genetic barrier, including lamivudine (LAM), adefovir (ADV), and telbivudine (LDT), and other drugs with uncertain antiviral efficacy, are widely used in China [15]. The use of these drugs increases the rate of resistance or poor response. In addition, more than 90% of the treated patients with CHB are receiving nucleos(t)ide analog (NA) therapy, whereas the majority of NA-treated patients are unable to achieve HBsAg loss and may require lifelong therapy. Although pegylated interferon (Peg-IFN) represents a valuable, finite option for NA-treated patients [16], new strategies for reducing virus resistance and optimizing HBsAg loss are also required.

To improve the antiviral effect of drugs with low genetic barrier, the “roadmap concept” was proposed in 2007, which suggested that patients with suboptimal response after 24 weeks of initial treatment switch to a potent agent or add a second agent without cross-resistance. The Efficacy Optimization of Response to Telbivudine (EFFORT) study prospectively evaluated the efficacy and safety of the roadmap strategy by adding ADV to LDT for suboptimal responders [17]. Results showed that, in comparison with the control group, more patients in the optimized group achieved HBV DNA<300 copies/mL (76.7% versus 61.2%) and less genotypic resistance (2.7% versus. 25.8%) at week 104. For suboptimal responders, LDT plus ADV showed additional antiviral potency, with 71.1% achieving virological response and only 0.5% developing resistance at week 104, compared with 46.6% achieving virological response and 37.8% developing resistance in the LDT monotherapy group. Thus, the roadmap strategy will benefit the patients by adding ADV with additive antiviral potency and low resistance to suboptimal responders.

Other studies focused on HBsAg loss by using various combinations or switching regimens of NAs and Peg-IFN for patients with CHB. In the “Optimising HBeAg Seroconversion in HBeAg-positive CHB Patients with Combination and Sequential Treatment of PegIFN alfa-2a and ETV” (OSST) study by Dr. Ning, HBeAg+ patients with CHB received long-term ETV treatment (up to 3 years) and then switched to a 48-week Peg-IFN treatment. These patients achieved significantly higher rates of HBeAg seroconversion than those who continued ETV monotherapy (14.9% versus 6.1%). The authors found an increase of HBsAg loss rates from 8.5% to 9.7% one year after the treatment endpoint, whereas none of the patients on ETV monotherapy achieved HBsAg loss [18,19]. Furthermore, prolonging the duration of Peg-IFN treatment increased the response rates in patients who switched from long-term NA therapy. The “New Switch” study showed that, in comparison with patients who received Peg-IFN for the standard duration of 48 weeks, those who extended Peg-IFN treatment to 96 weeks achieved higher rates of HBsAg loss (16.3% versus 21.3%) and HBsAg seroconversion (14.4% versus 16.0%) [20]. These data showed that the switch strategy, on some extent, increased HBeAg and HBsAg seroconversion, although the efficacy was limited.

For the Peg-IFN add-on strategy, the “Augmenting Response to Entecavir with Peginterferon a-2a for the Treatment of HBeAg-positive Chronic Hepatitis B” (ARES) trial showed that adding on 24-week Peg-IFN to ETV in HBeAg+ patients significantly improved off-treatment response and achieved greater decline in HBsAg levels compared with using ETV treatment alone [21]. The “Lowering Viral Load with Nucleos(T)Ide Analogues Prior to Peginterferon Alfa-2b Treatment to Increase Sustained Response in HBeAg-positive Chronic Hepatitis B” (PEGON) study showed that patients who received 48-week add-on Peg-IFN achieved higher rates of HBeAg seroconversion than those who continued NAs monotherapy (21.0% versus 8.0%) [22]. Add-on strategies for HBeAg- patients have also been investigated in recent large multicenter trials. In the “Randomized Study to Assess the Loss of HbsAg After a 48-week Treatment Period with Pegylated Interferon Alpha 2a in Patients with Chronic Hepatitis B” (PEGAN) study, HBsAg loss and seroconversion rates with add-on Peg-IFN were 8% and 7% at the end of treatment, but only 3% and 1%, respectively, in those who remained on NA monotherapy [23]. Interestingly, a recent trial in China evaluated the Peg-IFN as a therapeutic option for inactive HBsAg carriers. Peg-IFN and Peg-IFN combined with ADV were used for treating subjects with HBV DNA of<2000 IU/mL, with therapy duration no more than 96 weeks. Results showed that the HBsAg clearance rate and seroconversion rate in the treatment group were 29.8% and 20.2% at week 48 and increased to 44.7% and 38.3% at week 96. However, the HBsAg clearance rate in the control group was 2.4% at weeks 48 and 96, and none achieved HBsAg seroconversion [24]. Therefore, Peg-IFN treatment offers the opportunity for HBeAg patients to achieve decreased levels of HBV DNA and HBsAg and for inactive HBsAg carriers to achieve increased HBsAg loss.

Finally, the response-guided therapy can be used to optimize Peg-IFN treatment in China. The “Response-guided peginterferon therapy in patients with HBeAg-positive chronic hepatitis B” (EXCEL) study was conducted recently to test the strategy. In this study, 264 HBeAg+ patients with CHB were enrolled to receive Peg-IFN treatment for 24 weeks. Early responders (defined as HBsAg<1500 IU/mL and HBV DNA<105 copies/mL at week 24) received Peg-IFN for another 24 weeks. Non-early responders were randomized to receive Peg-IFN for another 24 weeks, prolonged treatment of Peg-IFN for another 72 weeks, or the addition of ADV. Mean decline in quantitative HBsAg from baseline to 24 weeks after the treatment was higher in early responders than that in non-early responders. However, no significant difference was observed among groups of non-early responders in any other efficacy endpoints. Results demonstrated that the early responders to Peg-IFN had a high rate of HBsAg loss, whereas the prolonged duration or addition of ADV may have no additional efficacy for non-early responders [25].

In summary, Chinese hepatologists are exerting great effort into improving the efficacy of antiviral therapy based on current antiviral drugs. Some of the new findings have been adopted by the Asian-Pacific clinical practice guidelines on the management of hepatitis B and the 2015 updated guidelines for CHB management [26].

Novel treatment strategies and biomarkers are promising

Novel therapeutic strategies to treat CHB

The current therapy is not effective in clearing viral reservoir (intrahepatic covalently closed circular DNA, cccDNA), thus curative HBV interventions will likely combine antiviral drugs with an immunotherapeutic approach to enable the restoration of a functional adaptive immune response [27]. A promising immunotherapeutic approach with broad applicability would be a therapeutic vaccination [28]. An antigen–antibody (HBsAg–HBIG) complex therapeutic vaccine candidate with alum as adjuvant was invented and tested in China. It showed promising results in a double-blind, placebo-controlled, phase IIb clinical trial in China [29]. However, results of the phase III clinical trial that included 450 patients failed to show any efficacy, possibly due to immune fatigue [30]. Thus, the strong tolerance to HBsAg possibly limits the therapeutic effect of the conventional HBsAg vaccination in patients with CHB. Recently, a preclinical study indicated that patients with CHB presented reduced immune tolerance to the preS1 domain of the HBV large surface antigen. The study suggested that targeting the weak tolerance of preS1 region induced robust immune responses in the HBV carrier mice and even reduced the tolerant status of HBsAg, opening a therapeutic window for the host to respond to the HBsAg vaccine. This study suggests that preS1 can function as a therapeutic vaccination for the control of CHB and needs future concept-in-proof evidence before clinical trial [31].

In addition, finding a potential vaccine adjuvant is important to enhance the efficacy of current therapeutic vaccine in clinics for patients with CHB. Granulocyte–macrophage colony-stimulating factor (GM-CSF) is known to be a potential vaccine adjuvant despite contradictory results from animal and human studies. A study used GM-CSF as a novel adjuvant for HBV therapeutic vaccine and found that GM-CSF in combination with the recombinant HBV vaccine could induce strong immune responses in HBV-transgenic mice and subsequently break the immune tolerance of HBsAg. These data indicated that GM-CSF may possibly become a novel immunotherapy for patients with CHB. Currently, a randomized controlled trial is undergoing tests to assess the clinical efficacy and safety of GM-CSF as an HBV therapeutic vaccine adjuvant [32].

Aside from therapeutic vaccines, antibody-mediated immunotherapy has gained attention. A novel monoclonal antibody (mAb), E6F6, has exhibited the most striking therapeutic effects in several HBV-persistent mice. Single-dose administration of E6F6 profoundly suppressed the levels of HBsAg and HBV DNA for several weeks and facilitated the restoration of anti-HBV T cell response in HBV carrier mice. These results indicated that E6F6-like mAbs may be a novel immunotherapeutic agent against chronic HBV infection [33,34]. These data provide some clues and guidance to facilitate the development of therapeutic antibodies against persistent HBV infection.

Notably, a recent pilot study using fecal microbiota transplantation seemed to prompt HBeAg seroconversion in HBeAg+ patients with CHB under long-term antiviral therapy, revealing an unexpected role of intestinal microbes in antiviral immunity [35]. The changes in intestinal microbiota seem to play an important role in the induction and promotion of HBV-induced chronic liver disease progression [36], thus fecal microbiota transplantation may be a useful therapy for HBV-related diseases in the future [37]. However, available data in this field remain limited and relevant scientific work has only just commenced.

The HBV core proteins are involved in capsid assembly, pregenomic RNA packaging, and cccDNA maintenance [38]. Six different chemical classes of inhibitors targeting the HBV capsid have been developed [39], and two chemotypes of nucleocapsid assembly inhibitors—an isothiafludine compound NZ-4 [40] and a pyridazinone compound 3711 [41]—were first discovered by Chinese researchers. Mechanistically, the core inhibitors will disrupt the viral nucleocapsids by either prevention of assembly or induction of misassembly [42]. The assembly of chimeric capsids from wild-type and drug-resistant core proteins could also be inhibited by core inhibitors. Hence, HBV core protein is a dominant antiviral target that may suppress the selection of drug-resistant viruses during core protein-targeting antiviral therapy [39]. Several inhibitors have been shown to inhibit HBV replication in mouse models and are currently under active preclinical and clinical development [4347].

Intrahepatic cccDNA is the key to a functional cure of CHB. To specifically target HBV cccDNA, several Chinese groups have explored the cutting-edge genome editing technologies, including transcription activator-like effector nucleases [48] and the clustered regularly interspaced short palindromic repeats (CRISPR)/CAS9 [49,50], as novel therapeutic approaches, which resulted in HBV inhibition and cccDNA mutation in vitro and in vivo. Recently, a multiplexed gRNA-guided CRISPR system [51,52] and a combined approach using CRISPR and RNAi [53] against HBV were invented. These approaches showed synergistic antiviral effects than the single gRNA designs, making cccDNA repair more difficult and favoring its elimination. Thus, significant progress had been made, and gene editing therapeutics for CHB cure is likely to be tested in clinical trials soon.

HBV RNA as a surrogate marker of cccDNA

The elimination of cccDNA marks the complete cure of CHB. However, in clinical practice even the “functional cure” of CHB, which is the serum HBsAg loss, is far from satisfactory [54]. Due to the high frequency of HBV DNA integration, serum HBsAg does not necessarily correlate with intrahepatic cccDNA, obscuring the usefulness of HBsAg as a biomarker, and better biomarkers for safely discontinuing the antiviral treatments is urgently required. Recently, a study identified that the HBV pregenomic RNA (pgRNA) is present in patients’ serum, encapsidated, and enveloped in virus-like particles [55]. Because the 3.5 kb serum pgRNA can only be produced from cccDNA, the dynamic decline of serum HBV RNA could reflect the status of intrahepatic cccDNA during NA therapy. Indeed, in comparison with HBV DNA, serum HBV RNA shows superiority in monitoring the sustained viral response or even in monitoring the exhaustion of the intrahepatic cccDNA pool. Therefore, it is reasonable to postulate that sustained loss of serum HBV RNA implicates the elimination or transcriptional silence of cccDNA, a status that could be defined as “parafunctional cure” [56]. In contrast to the HBsAg loss in “functional cure,” “parafunctional cure” could be serum HBsAg positive. Thus, a considerable number of patients with CHB could be expected to stop NA therapy safely based on their serum HBV RNA levels.

Quantitative anti-HBV core antibody and HBcrAg as novel markers

HBV infection induces strong immune responses to hepatitis B core antigen (HBcAg). Anti-HBc IgM is transiently elevated following acute HBV infection or acute flares in patients with CHB, whereas anti-HBc IgG persists after the first exposure to HBV. Recently, a novel assay for the quantification of total anti-HBc antibodies (qAnti-HBc) has been developed in China and was suggested to correlate with the host immune responses against HBV. qAnti-HBc levels were found to be positively correlated with ALT in HBV-infected patients [5759]. More importantly, the qAnti-HBc levels can distinguish different clinical phases of HBV infection. Among HBsAg carriers, those in an inflammatory state have significantly higher qAnti-HBc levels than those in immune tolerance and inactive carrier phases. In addition, qAnti-HBc can predict the response of antiviral therapy with Peg-IFN and NAs. Baseline qAnti-HBc levels could predict HBeAg seroconversion in HBeAg+ patients with CHB [60]. Patients with higher baseline qAnti-HBc levels exhibited a higher rate of HBeAg seroconversion than patients with lower qAnti-HBc levels, and the qAnti-HBc levels steadily declined in the treatment responders. Collectively, total qAnti-HBc level is a novel serological marker for HBV-induced liver disease and is complementary to current quantitative viral markers, including HBsAg and HBV DNA levels. Its potential role in predicting antiviral treatment response deserves further investigation.

Hepatitis B core-related antigen (HBcrAg) consists of three proteins synthesized from the precore/core gene: HBcAg, HBeAg, and a small core-related protein (p22cr). HBcAg, HBeAg, and p22cr share a 149-long amino-acid sequence that is detected using HBcrAg assays [61]. HBcrAg is a marker for viral replication and the amount of intrahepatic cccDNA on some extent in both HBeAg+ and HBeAg patients [62,63]. Increasing studies suggest that HBcrAg levels help to predict treatment responses [6466], safe cessation of NA therapy [67], risk for disease progress [68,69], and HBV reactivation during immunosuppressive therapy [70]. Currently, the specific assay only measuring HBcAg is still under development and not available yet. Whether HBcAg as HBV marker will be more precise than HBcrAg is still unknown. Certainly, the clinical utility of HBcrAg and HBcAg as predictors needs further investigation.

Coinfections of HBV and other hepatotropic viruses should not be neglected

In general, there are five hepatotropic viruses that are responsible for most cases of viral hepatitis, including hepatitis A virus (HAV), HBV, hepatitis C virus (HCV), hepatitis D virus (HDV), and hepatitis E virus (HEV). In China, due to the epidemic status, the coinfection with HCV, HDV, and HEV may be cofactors of liver diseases caused by chronic HBV infection.

The epidemic caused by HCV affects all regions, with major differences between and within countries. Direct-acting antiviral agents (DAAs), a huge success in modern medicine, have been demonstrated to cure most patients with chronic hepatitis C (CHC). However, HBV reactivation occurs in patients with CHC with HBV coinfections treated with DAAs [71]. The severity of hepatitis could range from HBV reactivation without hepatitis to fulminant hepatic failure, requiring liver transplantation. Recently, a study reported the HBV reactivation among patients receiving DAAs for HCV infections in areas endemic for HBV in China. Cases with HBV reactivation were identified, and HBsAg presence was a strong risk factor for developing reactivation during treatment [72]. Thus, more attention should be drawn to HBV reactivation, and evaluating HBV status is important before initiating DAAs therapy in HBV-endemic areas. The underlying mechanisms of HBV reactivation during DAAs therapy for CHC remain speculative. New insights have been obtained from cell culture studies, where HBV and HCV were shown to replicate in the same hepatocytes without evidence of interference, suggesting that HCV suppresses HBV replication via an indirect immune mechanism [73,74].

HDV is a satellite viroid that depends on HBV for its production [75] and infects only those persons who already have HBV infection. In HBV/HDV-coinfected patients, HDV virions are produced in coinfected liver cells, along with HBV particles. The HDV RNA can replicate to high levels in the hepatocyte nucleus, leading to the production of HDV ribonucleoproteins that can egress in the presence of HBV envelope proteins to produce HDV virions. The latter can subsequently infect human hepatocytes. The chronic HBV/HDV coinfection significantly worsens the course of the liver disease as compared to the HBV monoinfection, and the anti-HBV NA therapy fails to suppress the HDV activity [76]. Only IFN-based treatments can be used, and the response is suboptimal. The distribution of HDV infection varies around the world. In China, data regarding the HBV/HDV coinfections are scarce. Several recent studies in Guangdong and Hunan provinces showed an approximately 5% prevalence of HDV among patients with CHB and injection drug users [77,78]. The HDV prevalence was considered to be very low in China, but this figure could be largely underestimated possibly due to the low sensitivity of the detection method. In this aspect, a novel quantitative microarray antibody capture assay has been developed and identified an extremely high HDV prevalence among the HBV-infected Mongolians [79]. Interestingly, the high prevalence of HDV among Chinese Mongolian patients with CHB was also identified in our unpublished data. Therefore, future studies may screen the Chinese population with HBV infection using the method.

Infection with HEV is reported worldwide, but it is most common in East and South Asia. A vaccine to prevent HEV infection has been developed and is licensed in China, but it is not yet available in most other countries [80]. In China, HEV is endemic with a prior HEV infection rate of 20%–40% (anti-HEV IgG positivity) of the total population and an additional 1% of new infections annually [81]. Due to the high prevalence of both HBV and HEV, coinfections by the two viruses are not rare in China. Nearly 20%–40% of all symptomatic HEV infections were determined to be indeed coinfections [82]. The underlying CHB could predispose the coinfected patients to more severe symptoms than HEV monoinfections. HEV infection may also aggravate the clinical outcome of HBV infection, especially under conditions of liver cirrhosis. Notably, HEV superinfections were reported as the second most prevalent precipitating factor in triggering acute-on-chronic liver failures in patients with CHB in China [83]. Our recent study revealed that underlying CHB-related cirrhosis poses a great risk for adverse outcomes in patients with superimposed hepatitis E [84]. An HBeAg status and intermediate HBV DNA levels were shown to be associated with severe diseases in noncirrhotic superinfected patients with CHB. Based on these new findings, we proposed that prophylactic HEV vaccination and potent anti-HBV therapy in high-risk patients with CHB should be strengthened to largely reduce the morbidity and mortality from superimposed hepatitis E.

Several recent surveys have shown that HBV coinfection accounts approximately 10% of all human immunodeficiency virus (HIV)-infected population in China, varying between 8.7% and 16.2% depending on different regions [8589]. Probably due to direct infection of liver cells by HIV, increased microbial translation from the gut, and immune hyperactivation and exhaustion, HBV–HIV infection is a risk factor for severe liver diseases than monoinfection [90]. Even with effective suppression of both HBV and HIV by TDF-based treatment, liver fibrosis still occurs in a subset of HBV–HIV-coinfected patients, leading to higher morbidity and mortality than in monoinfected patients. Regarding the anti-HBV treatment, drug resistance under TDF therapy is very low; moreover, LAM-based cART is also efficacious for HBV treatment through 48 weeks in HIV–HBV coinfections when baseline HBV DNA is less than 20 000 IU/mL [91]. Interestingly, inflammation by acute HIV- or AIDS-associated immune reconstitution disease may benefit from the HBsAg loss [92]. In the future, new treatment should be explored to reduce liver fibrosis, and specific consideration of HIV–HBV-coinfected patients will be required when assessing the role of new antivirals for both HBV and HIV.

Functional cure of CHB and elimination of HBV by 2030?

In summary, China has made great progress in the clinical studies of hepatitis B over the last two decades (Table 1). Elimination of HBV by 2030 was proposed by WHO as the next goal for HBV management. With the largest HBV-infected population in the world, the Chinese government, scientists, and hepatologists are working together to realize this dream—the functional cure of CHB and elimination of HBV, which still remains as two unmet critical issues. As the first step, both ETV and TDF with stronger antiviral effect and much lower drug resistance have been listed as the priority of antiviral drugs in the updated 2015 guideline for management of patients with CHB in China, similar to the WHO recommendation. In addition, scientists are actively seeking novel therapies for the functional cure of chronic HBV infection (Fig. 1). In the cure status, patients should have a sustained viral suppression, HBeAg and HBsAg seroconversion after the cessation of antiviral treatment, and a persistent immunologic control of HBV infection despite the presence of residual cccDNA within the liver. Moreover, HBV coinfections with HCV, HDV, HEV, and HIV need more attention because they will cause severe liver diseases. Further innovation is also needed to optimize vaccines and other prevention interventions, diagnostics, prognostics, and models of service delivery, focusing on improving efficacy, quality, safety, and access and efficiently documenting and achieving public health impact.

In 2017, the leading professional organizations in liver disease—the American Association for the Study of Liver Diseases, the European Association for the Study of the Liver, the Asian Pacific Association for the Study of the Liver, and the Latin American Association for the Study of the Liver—have published the “Joint Society Statement for the Elimination of Viral Hepatitis,” which urges governments, health care organizations, and nongovernmental organizations to implement the action plans to eliminate viral hepatitis. We believe that committed research funding will ensure continuous progresses in the mechanistic discovery, drug development, and clinical research. Combinatory therapy with novel antiviral that targets HBV antigens and cccDNA and the induction of HBV-specific immunity will eventually lead to the functional cure of CHB, whereas a functional cure, ultimately, would complete the set of tools available for final elimination.

References

[1]

World Health Organizaiton. Global Hepatitis Report 20172017:3

[2]

Cui FZhuang H. Hepatitis B control in China: progress, challenges and strategies. Chin J Vir Dis (Zhongguo Bing Du Bing Za Zhi) 20166: 81–87 (in Chinese)

[3]

Liao XLiang Z. Strategy vaccination against Hepatitis B in China. Hum Vaccin Immunother 201511(6): 1534–1539

[4]

Liang XCui FHadler SWang XLuo HChen YKane MShapiro CYang WWang Y. Origins, design and implementation of the China GAVI project. Vaccine 201331(Suppl 9): J8–J14

[5]

Wang ALQiao YPWang LHFang LWWang FJin XQiu JWang XYWang QWu JLVermund SHSong L. Integrated prevention of mother-to-child transmission for human immunodeficiency virus, syphilis and hepatitis B virus in China. Bull World Health Organ 201593(1): 52–56

[6]

Liang XBi SYang WWang LCui GCui FZhang YLiu JGong XChen YWang FZheng HWang FGuo JJia ZMa JWang HLuo HLi LJin SHadler SCWang Y. Evaluation of the impact of hepatitis B vaccination among children born during 1992–2005 in China. J Infect Dis 2009200(1): 39–47

[7]

Liang XBi SYang WWang LCui GCui FZhang YLiu JGong XChen YWang FZheng HWang FGuo JJia ZMa JWang HLuo HLi LJin SHadler SCWang Y. Epidemiological serosurvey of hepatitis B in China—declining HBV prevalence due to hepatitis B vaccination. Vaccine 200927(47): 6550–6557

[8]

Cui FShen LLi LWang HWang FBi SLiu JZhang GWang FZheng HSun XMiao NYin ZFeng ZLiang XWang Y. Prevention of chronic hepatitis B after 3 decades of escalating vaccination policy, China. Emerg Infect Dis 201723(5): 765–772

[9]

Qu CChen TFan CZhan QWang YLu JLu LLNi ZHuang FYao HZhu JFan JZhu YWu ZLiu GGao WZang MWang DDai MHsia CCZhang YSun Z. Efficacy of neonatal HBV vaccination on liver cancer and other liver diseases over 30-year follow-up of the Qidong hepatitis B intervention study: a cluster randomized controlled trial. PLoS Med 201411(12): e1001774

[10]

Zhuang H. Several issues regarding prevention of mother-to-child transmission of hepatitis B virus. J Clin Hepatol 201632: 2227–2230

[11]

Zou HChen YDuan ZZhang HPan C. Virologic factors associated with failure to passive-active immunoprophylaxis in infants born to HBsAg-positive mothers. J Viral Hepat 201219(2): e18–e25

[12]

Yi PChen RHuang YZhou RRFan XG. Management of mother-to-child transmission of hepatitis B virus: propositions and challenges. J Clin Virol 201677: 32–39

[13]

Pan CQDuan ZDai EZhang SHan GWang YZhang HZou HZhu BZhao WJiang H; China Study Group for the Mother-to-Child Transmission of Hepatitis B. Tenofovir to prevent hepatitis B transmission in mothers with high viral load. N Engl J Med 2016374(24): 2324–2334

[14]

Fan RYin XLiu ZLiu ZLau GHou J. A hepatitis B-free generation in China: from dream to reality. Lancet Infect Dis 201616(10): 1103–1105

[15]

Yu RFan RHou J. Chronic hepatitis B virus infection: epidemiology, prevention, and treatment in China. Front Med 20148(2): 135–144

[16]

Zhang WXie QNing QDou XChen XJia JXie YRen H. The role of peginterferon in nucleos(t)ide-analogue-treated chronic hepatitis B patients: a review of published literature. J Viral Hepat 201724(8): 618–623

[17]

Sun JXie QTan DNing QNiu JBai XFan RChen SCheng JYu YWang HXu MShi GWan MChen XTang HSheng JDou XShi JRen HWang MZhang HGao ZChen CMa HJia JHou J. The 104-week efficacy and safety of telbivudine-based optimization strategy in chronic hepatitis B patients: a randomized, controlled study. Hepatology 201459(4): 1283–1292

[18]

Han MJiang JHou JTan DSun YZhao MNing Q. Sustained immune control in HBeAg-positive patients who switched from entecavir therapy to pegylated interferon-α2a: 1 year follow-up of the OSST study. Antivir Ther 201621(4): 337–344

[19]

Ning QHan MSun YJiang JTan DHou JTang HSheng JZhao M. Switching from entecavir to PegIFN alfa-2a in patients with HBeAg-positive chronic hepatitis B: a randomised open-label trial (OSST trial). J Hepatol 201461(4): 777–784

[20]

Ren HHu PChen XGong GShang JZhang WLi YJiang JXie QDou X. Switching to PegIFN a-2a in NUC treated CHB patients (NEW SWITCH study): comparison 48 and 96 weeks. Hepatol Int 201610: O101 (meeting abstract; APASL 2016, Feb 20–24, Tokyo, Japan) 

[21]

Brouwer WP, Xie Q, Sonneveld MJ, Zhang N, Zhang Q, Tabak FStreinu-Cercel AWang JYIdilman RReesink HWDiculescu MSimon KVoiculescu MAkdogan MMazur WReijnders JGVerhey EHansen BEJanssen HL; ARES Study Group. Adding pegylated interferon to entecavir for hepatitis B e antigen-positive chronic hepatitis B: A multicenter randomized trial (ARES study). Hepatology 201561(5): 1512–1522

[22]

Chi HXie QZhang NQi XChen LGuo SGuo QArends PWang JVerhry E. Final results of Peginterferon Alfa-2b add-on during long-term Nucleos(t)ide Analogue therapy in HBeAg-positive patients- a multicenter randomized controlled trial (PEGON study). Hepatology 2015622002 (meeting abstract; AASLD 2015, Nov 13 17, San Francisco, USA)

[23]

Bourlière MRabiega PGanne-Carrie NSerfaty LMarcellin PBarthe YThabut DGuyader DHezode CPicon MCausse XLeroy VBronowicki JPCarrieri PRiachi GRosa IAttali PMolina JMBacq YTran AGrangé JDZoulim FFontaine HAlric LBertucci IBouvier-Alias MCarrat F; ANRS HB06 PEGAN Study Group. Effect on HBs antigen clearance of addition of pegylated interferon alfa-2a to nucleos(t)ide analogue therapy versus nucleos(t)ide analogue therapy alone in patients with HBe antigen-negative chronic hepatitis B and sustained undetectable plasma hepatitis B virus DNA: a randomised, controlled, open-label trial. Lancet Gastroenterol Hepatol 20172(3): 177–188

[24]

Cao ZLiu YMa LLu JJin YRen SHe ZShen CChen X. A potent hepatitis B surface antigen response in subjects with inactive hepatitis B surface antigen carrier treated with pegylated-interferon alpha. Hepatology 201766(4): 1058–1066

[25]

Sun JMa HXie QXie YSun YWang HShi GWan MNiu JNing QYu YZhou HCheng JKang WXie YFan RWei LZhuang HJia JHou J. Response-guided peginterferon therapy in patients with HBeAg-positive chronic hepatitis B: a randomized controlled study. J Hepatol 201665(4): 674–682

[26]

Sarin SKKumar MLau GKAbbas ZChan HLChen CJChen DSChen HLChen PJChien RNDokmeci AKGane EHou JLJafri WJia JKim JHLai CLLee HCLim SGLiu CJLocarnini SAl Mahtab MMohamed ROmata MPark JPiratvisuth TSharma BCSollano JWang FSWei LYuen MFZheng SSKao JH. Asian-Pacific clinical practice guidelines on the management of hepatitis B: a 2015 update. Hepatol Int 201610(1): 1–98

[27]

Liang TJBlock TMMcMahon BJGhany MGUrban SGuo JTLocarnini SZoulim FChang KMLok AS. Present and future therapies of hepatitis B: from discovery to cure. Hepatology 201562(6): 1893–1908

[28]

Li JBao MGe JRen SZhou TQi FPu XDou J. Research progress of therapeutic vaccines for treating chronic hepatitis B. Hum Vaccin Immunother 201713(5): 986–997

[29]

Xu DZZhao KGuo LMLi LJXie QRen HZhang JMXu MWang HFHuang WXBai XFNiu JQLiu PChen XYShen XLYuan ZHWang XYWen YM. A randomized controlled phase IIb trial of antigen-antibody immunogenic complex therapeutic vaccine in chronic hepatitis B patients. PLoS One 20083(7): e2565

[30]

Xu DZWang XYShen XLGong GZRen HGuo LMSun AMXu MLi LJGuo XHZhen ZWang HFGong HYXu CJiang NPan CGong ZJZhang JMShang JXu JXie QWu TFHuang WXLi YGXu JYuan ZHWang BZhao KWen YM; YIC Efficacy Trial Study Team. Results of a phase III clinical trial with an HBsAg-HBIG immunogenic complex therapeutic vaccine for chronic hepatitis B patients: experiences and findings. J Hepatol 201359(3): 450–456

[31]

Bian YZhang ZSun ZZhao JZhu DWang YFu SGuo JLiu LSu LWang FSFu YXPeng H. Vaccines targeting PreS1 domain overcome immune tolerance in HBV carrier mice. Hepatology 201766(4): 1067–1082

[32]

Wang XDong AXiao JZhou XMi HXu HZhang JWang B. Overcoming HBV immune tolerance to eliminate HBsAg-positive hepatocytes via pre-administration of GM-CSF as a novel adjuvant for a hepatitis B vaccine in HBV transgenic mice. Cell Mol Immunol 201613(6): 850–861

[33]

Zhang TYYuan QZhao JHZhang YLYuan LZLan YLo YCSun CPWu CRZhang JFZhang YCao JLGuo XRLiu XMo XBLuo WXCheng TChen YXTao MHShih JWZhao QJZhang JChen PJYuan YAXia NS. Prolonged suppression of HBV in mice by a novel antibody that targets a unique epitope on hepatitis B surface antigen. Gut 201665(4): 658–671

[34]

Gao YZhang TYYuan QXia NS. Antibody-mediated immunotherapy against chronic hepatitis B virus infection. Hum Vaccin Immunother 2017:13(8): 1768–1773

[35]

Ren YDYe ZSYang LZJin LXWei WJDeng YYChen XXXiao CXYu XFXu HZXu LZTang YNZhou FWang XLChen MYChen LGHong MZRen JLPan JS. Fecal microbiota transplantation induces hepatitis B virus e-antigen (HBeAg) clearance in patients with positive HBeAg after long-term antiviral therapy. Hepatology 201765(5): 1765–1768

[36]

Qin NYang FLi APrifti EChen YShao LGuo JLe Chatelier EYao JWu LZhou JNi SLiu LPons NBatto JMKennedy SPLeonard PYuan CDing WChen YHu XZheng BQian GXu WEhrlich SDZheng SLi L. Alterations of the human gut microbiome in liver cirrhosis. Nature 2014513(7516): 59–64

[37]

Kang YCai Y. Gut microbiota and hepatitis-B-virus-induced chronic liver disease: implications for faecal microbiota transplantation therapy. J Hosp Infect 201796(4): 342–348

[38]

Zlotnick AVenkatakrishnan BTan ZLewellyn ETurner WFrancis S. Core protein: a pleiotropic keystone in the HBV lifecycle. Antiviral Res 2015121: 82–93

[39]

Wu SZhao QZhang PKulp JHu LHwang NZhang JBlock TMXu XDu YChang JGuo JT. Discovery and mechanistic study of benzamide derivatives that modulate hepatitis B virus capsid assembly. J Virol 201791(16): e00519-17

[40]

Yang LWang YJChen HJShi LPTong XKZhang YMWang GFWang WLFeng CLHe PLXu YBLu MJTang WNan FJZuo JP. Effect of a hepatitis B virus inhibitor, NZ-4, on capsid formation. Antiviral Res 2016125: 25–33

[41]

Wang YJLu DXu YBXing WQTong XKWang GFFeng CLHe PLYang LTang WHu YHZuo JP. A novel pyridazinone derivative inhibits hepatitis B virus replication by inducing genome-free capsid formation. Antimicrob Agents Chemother 201559(11): 7061–7072

[42]

Tang LZhao QWu SCheng JChang JGuo JT. The current status and future directions of hepatitis B antiviral drug discovery. Expert Opin Drug Discov 201712(1): 5–15

[43]

Chinese Society of Hepatology, Chinese Medical Association; Chinese Society of Infectious Diseases, Chinese Medical Association; Hou JL, Wei L. The guideline of prevention and treatment for chronic hepatitis B: a 2015 update. Chin J Hepatol (Zhonghua Gan Zang Bing Za Zhi) 201523(12): 888–905 (in Chinese)

[44]

Qiu ZLin XZhou MLiu YZhu WChen WZhang WGuo LLiu HWu GHuang MJiang MXu ZZhou ZQin NRen SQiu HZhong SZhang YZhang YWu XShi LShen FMao YZhou XYang WWu JZYang GMayweg AVShen HCTang G. Design and synthesis of orally bioavailable 4-methyl heteroaryldihydropyrimidine based hepatitis B virus (HBV) capsid inhibitors. J Med Chem 201659(16): 7651–7666

[45]

Qiu ZLin XZhang WZhou MGuo LKocer BWu GZhang ZLiu HShi HKou BHu THu YHuang MYan SFXu ZZhou ZQin NWang YFRen SQiu HZhang YZhang YWu XSun KZhong SXie JOttaviani GZhou YZhu LTian XShi LShen FMao YZhou XGao LYoung JATWu JZYang GMayweg AVShen HCTang GZhu W. Discovery and pre-clinical characterization of third-generation 4-H heteroaryldihydropyrimidine (HAP) analogues as hepatitis B virus (HBV) capsid inhibitors. J Med Chem 201760(8): 3352–3371

[46]

Pei YWang CYan SFLiu G. Past, current, and future developments of therapeutic agents for treatment of chronic hepatitis B virus infection. J Med Chem 201760(15): 6461–6479

[47]

Ren QLiu XLuo ZLi JWang CGoldmann SZhang JZhang Y. Discovery of hepatitis B virus capsid assembly inhibitors leading to a heteroaryldihydropyrimidine based clinical candidate (GLS4). Bioorg Med Chem 201725(3): 1042–1056

[48]

Chen JZhang WLin JWang FWu MChen CZheng YPeng XLi JYuan Z. An efficient antiviral strategy for targeting hepatitis B virus genome using transcription activator-like effector nucleases. Mol Ther 201422(2): 303–311

[49]

Liu XHao RChen SGuo DChen Y. Inhibition of hepatitis B virus by the CRISPR/Cas9 system via targeting the conserved regions of the viral genome. J Gen Virol 201596(8): 2252–2261

[50]

Dong CQu LWang HWei LDong YXiong S. Targeting hepatitis B virus cccDNA by CRISPR/Cas9 nuclease efficiently inhibits viral replication. Antiviral Res 2015118: 110–117

[51]

Wang JXu ZWLiu SZhang RYDing SLXie XMLong LChen XMZhuang HLu FM. Dual gRNAs guided CRISPR/Cas9 system inhibits hepatitis B virus replication. World J Gastroenterol 201521(32): 9554–9565

[52]

Li HSheng CWang SYang LLiang YHuang YLiu HLi PYang CYang XJia LXie JWang LHao RDu XXu DZhou JLi MSun YTong YLi QQiu SSong H. Removal of integrated hepatitis B virus DNA using CRISPR-Cas9. Front Cell Infect Microbiol 20177: 91

[53]

Wang JChen RZhang RDing SZhang TYuan QGuan GChen XZhang TZhuang HNunes FBlock TLiu SDuan ZXia NXu ZLu F. The gRNA-miRNA-gRNA ternary cassette combining CRISPR/Cas9 with RNAi approach strongly inhibits hepatitis B virus replication. Theranostics 20177(12): 3090–3105

[54]

Zoulim FLebossé FLevrero M. Current treatments for chronic hepatitis B virus infections. Curr Opin Virol 201618: 109–116

[55]

Wang JShen THuang XKumar GRChen XZeng ZZhang RChen RLi TZhang TYuan QLi PCHuang QColonno RJia JHou JMcCrae MAGao ZRen HXia NZhuang HLu F. Serum hepatitis B virus RNA is encapsidated pregenome RNA that may be associated with persistence of viral infection and rebound. J Hepatol 201665(4): 700–710

[56]

Lu FMWang JChen XMJiang JNZhang WHZhao JMRen HHou JLXia NS. The potential use of serum HBV RNA to guide the functional cure of chronic hepatitis B. Chin J Hepatol (Zhonghua Gan Zang Bing Za Zhi) 201725(2): 105–110 (in Chinese) 

[57]

Li AYuan QHuang ZFan JGuo RLou BZheng QGe SChen YSu ZYeo AEChen YZhang JXia N. Novel double-antigen sandwich immunoassay for human hepatitis B core antibody. Clin Vaccine Immunol 201017(3): 464–469

[58]

Song LWLiu PGLiu CJZhang TYCheng XDWu HLYang HCHao XKYuan QZhang JKao JHChen DSChen PJXia NS. Quantitative hepatitis B core antibody levels in the natural history of hepatitis B virus infection. Clin Microbiol Infect 201521(2): 197–203

[59]

Yuan QSong LWCavallone DMoriconi FCherubini BColombatto POliveri FCoco BARicco GBonino FShih JWXia NSBrunetto MR. Total hepatitis B core antigen antibody, a quantitative non-invasive marker of hepatitis B virus induced liver disease. PLoS One 201510(6): e0130209

[60]

Fan RSun JYuan QXie QBai XNing QCheng JYu YNiu JShi GWang HTan DWan MChen SXu MChen XTang HSheng JLu FJia JZhuang HXia NHou J; Chronic Hepatitis B Study Consortium. Baseline quantitative hepatitis B core antibody titre alone strongly predicts HBeAg seroconversion across chronic hepatitis B patients treated with peginterferon or nucleos(t)ide analogues. Gut 201665(2): 313–320

[61]

Höner Zu Siederdissen CMaasoumy BCornberg M. What is new on HBsAg and other diagnostic markers in HBV infection? Best Pract Res Clin Gastroenterol 201731(3): 281–289

[62]

Chen EQFeng SWang MLLiang LBZhou LYDu LYYan LBTao CMTang H. Serum hepatitis B core-related antigen is a satisfactory surrogate marker of intrahepatic covalently closed circular DNA in chronic hepatitis B. Sci Rep 20177(1): 173

[63]

Wong DKSeto WKCheung KSChong CKHuang FYFung JLai CLYuen MF. Hepatitis B virus core-related antigen as a surrogate marker for covalently closed circular DNA. Liver Int 201737(7): 995–1001

[64]

Song GYang RRao HFeng BMa HJin QWei L. Serum HBV core-related antigen is a good predictor for spontaneous HBeAg seroconversion in chronic hepatitis B patients. J Med Virol 201789(3): 463–468

[65]

van Campenhout MJBrouwer WPvan Oord GWXie QZhang QZhang NGuo STabak FStreinu-Cercel AWang JPas SDSonneveld MJde Knegt RJBoonstra AHansen BEJanssen HL. Hepatitis B core-related antigen levels are associated with response to entecavir and peginterferon add-on therapy in hepatitis B e antigen-positive chronic hepatitis B patients. Clin Microbiol Infect 201622(6): 571.e5–571.e9

[66]

Ma HYang RFLi XHJin QWei L. HBcrAg identifies patients failing to achieve HBeAg seroconversion treated with pegylated interferon alfa-2b. Chin Med J (Engl) 2016129(18): 2212–2219

[67]

Riveiro-Barciela MBes MRodríguez-Frías FTabernero DRuiz ACasillas RVidal-González JHoms MNieto LSauleda SEsteban RButi M. Serum hepatitis B core-related antigen is more accurate than hepatitis B surface antigen to identify inactive carriers, regardless of hepatitis B virus genotype. Clin Microbiol Infect 2017 Mar 11 [Epub ahead of print] 

[68]

Cheung KSSeto WKWong DKLai CLYuen MF. Relationship between HBsAg, HBcrAg and hepatocellular carcinoma in patients with undetectable HBV DNA under nucleos(t)ide therapy. J Viral Hepat 201724(8): 654–661

[69]

Zhang ZQLu WWang YBWeng QCZhang ZYYang ZQFeng YL. Measurement of the hepatitis B core-related antigen is valuable for predicting the pathological status of liver tissues in chronic hepatitis B patients. J Virol Methods 2016235: 92–98

[70]

Seto WKWong DHChan TYHwang YYFung JLiu KSGill HLam YFCheung KSLie AKLai CLKwong YLYuen MF. Association of hepatitis B core-related antigen with hepatitis B virus reactivation in occult viral carriers undergoing high-risk immunosuppressive therapy. Am J Gastroenterol 2016111(12): 1788–1795

[71]

Chen GWang CChen JJi DWang YWu VKarlberg JLau G. Hepatitis B reactivation in hepatitis B and C coinfected patients treated with antiviral agents: a systematic review and meta-analysis. Hepatology 201766(1): 13–26

[72]

Wang CJi DChen JShao QLi BLiu JWu VWong AWang YZhang XLu LWong CTsang SZhang ZSun JHou JChen GLau G. Hepatitis due to reactivation of hepatitis B virus in endemic areas among patients with hepatitis C treated with direct-acting antiviral agents. Clin Gastroenterol Hepatol 201715(1): 132–136

[73]

Cheng XBlock PXia YLiang TJ. Hepatitis B virus replicates without being sensed by the innate immunity of the infected cells. 2016 International HBV Meeting. Sep 21–24, 2016, Seoul, Korea. Oral presentation abstract 119

[74]

Mutz PMetz PLempp FBender SQu BSchoneweis KRestuccia AKoschny RPolychronidis GSchemmer PBaumert TUrban SBartenschlager R. HBV bypasses the innate immune system and does not protect HCV against the antiviral effect of IFN. 2016 International HBV Meeting. Sep 21–24, 2016, Seoul, Korea. Oral presentation abstract 120

[75]

Sureau CNegro F. The hepatitis delta virus: replication and pathogenesis. J Hepatol 201664(1 Suppl): S102–S116

[76]

Lempp FANi YUrban S. Hepatitis delta virus: insights into a peculiar pathogen and novel treatment options. Nat Rev Gastroenterol Hepatol 201613(10): 580–589

[77]

Chen FZhang JGuo FWen BLuo SYuan DLin YOu WTang PDai GLi FLiu WQu X. Hepatitis B, C, and D virus infection showing distinct patterns between injection drug users and the general population. J Gastroenterol Hepatol 201732(2): 515– 520

[78]

Liao BZhang FLin SHe HLiu YZhang JXu YYi JChen YLiu HWang ZCai W. Epidemiological, clinical and histological characteristics of HBV/HDV co-infection: a retrospective cross-sectional study in Guangdong, China. PLoS One 20149(12): e115888

[79]

Chen XOidovsambuu OLiu PGrosely RElazar MWinn VDFram BBoa ZDai HDashtseren BYagaanbuyant DGenden ZDashdorj NBungert ADashdorj NGlenn JS. A novel quantitative microarray antibody capture (Q-MAC) assay identifies an extremely high HDV prevalence amongst HBV infected Mongolians. Hepatology2016 Nov 23. [Epub ahead of print] 

[80]

Wang XLi MLi SWu TZhang JXia NZhao Q. Prophylaxis against hepatitis E: at risk populations and human vaccines. Expert Rev Vaccines 201615(7): 815–827

[81]

Zhu FCHuang SJWu TZhang XFWang ZZAi XYan QYang CLCai JPJiang HMWang YJNg MHZhang JXia NS. Epidemiology of zoonotic hepatitis E: a community-based surveillance study in a rural population in China. PLoS One 20149(1): e87154

[82]

Zhang SChen CPeng JLi XZhang DYan JZhang YLu CXun JLi WLing YHuang YChen L. Investigation of underlying comorbidities as risk factors for symptomatic human hepatitis E virus infection. Aliment Pharmacol Ther 201745(5): 701–713

[83]

Shi YYang YHu YWu WYang QZheng MZhang SXu ZWu YYan HChen Z. Acute-on-chronic liver failure precipitated by hepatic injury is distinct from that precipitated by extrahepatic insults. Hepatology 201562(1): 232–242

[84]

Chen CZhang SYZhang DDLi XYZhang YLLi WXYan JJWang MXun JNLu CLing YHuang YXChen L. Clinical features of acute hepatitis E super-infections on chronic hepatitis B. World J Gastroenterol 201622(47): 10388–10397

[85]

Zhang FZhu HWu YDou ZZhang YKleinman NBulterys MWu ZMa YZhao DLiu XFang HLiu JCai WPShang H. HIV, hepatitis B virus, and hepatitis C virus co-infection in patients in the China National Free Antiretroviral Treatment Program, 2010-12: a retrospective observational cohort study. Lancet Infect Dis 201414(11): 1065–1072

[86]

Wu SYan PYang TWang ZYan Y. Epidemiological profile and risk factors of HIV and HBV/HCV co-infection in Fujian Province, southeastern China. J Med Virol 201789(3): 443–449

[87]

Yang TChen QLi DWang TGou YWei BTao C. High prevalence of syphilis, HBV and HCV co-infection, and low rate of effective vaccination against hepatitis B in HIV-infected patients in West China hospital. J Med Virol2017 Aug 9. [Epub ahead of print]

[88]

Xie JHan YQiu ZLi YLi YSong XWang HThio CLLi T. Prevalence of hepatitis B and C viruses in HIV-positive patients in China: a cross-sectional study. J Int AIDS Soc 201619(1):  20659

[89]

Huang SMCai WPHu FYLan YLiao BLChen YPTang XP. Epidemiological and clinical characteristics of hepatitis B virus in HIV-infected patients in Guangdong, China. Int J STD AIDS 201627(10): 890–897

[90]

Singh KPCrane MAudsley JAvihingsanon ASasadeusz JLewin SR. HIV-hepatitis B virus coinfection: epidemiology, pathogenesis, and treatment. AIDS 201731(15): 2035–2052

[91]

Li YXie JHan YWang HZhu TWang NLv WGuo FQiu ZLi YDu SSong XThio CLLi T. Lamivudine monotherapy-based cART is efficacious for HBV treatment in HIV/HBV coinfection when baseline HBV DNA<20,000 IU/mL. J Acquir Immune Defic Syndr 201672(1): 39–45

[92]

Jiao YLi NChen XZhang TLi HLi WHuang XLiu ZZhang YWu H. Acute HIV infection is beneficial for controlling chronic hepatitis B. Clin Infect Dis 201560(1): 128–134

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany

AI Summary AI Mindmap
PDF (201KB)

5025

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/