Physiological functions and clinical implications of the N-end rule pathway
Yujiao Liu, Chao Liu, Wen Dong, Wei Li
Physiological functions and clinical implications of the N-end rule pathway
The N-end rule pathway is a unique branch of the ubiquitin-proteasome system in which the determination of a protein’s half-life is dependent on its N-terminal residue. The N-terminal residue serves as the degradation signal of a protein and thus called N-degron. N-degron can be recognized and modifed by several steps of post-translational modifications, such as oxidation, deamination, arginylation or acetylation, it then polyubiquitinated by the N-recognin for degradation. The molecular basis of the N-end rule pathway has been elucidated and its physiological functions have been revealed in the past 30 years. This pathway is involved in several biological aspects, including transcription, differentiation, chromosomal segregation, genome stability, apoptosis, mitochondrial quality control, cardiovascular development, neurogenesis, carcinogenesis, and spermatogenesis. Disturbance of this pathway often causes the failure of these processes, resulting in some human diseases. This review summarized the physiological functions of the N-end rule pathway, introduced the related biological processes and diseases, with an emphasis on the inner link between this pathway and certain symptoms.
N-end rule pathway / Ate1 / cardiovascular development / neurogenesis / spermatogenesis / neurodegenerative disorders / Johanson–Blizzard syndrome
[1] |
Etlinger JD, Goldberg AL. A soluble ATP-dependent proteolytic system responsible for the degradation of abnormal proteins in reticulocytes. Proc Natl Acad Sci U S A 1977; 74(1): 54–58
CrossRef
Pubmed
Google scholar
|
[2] |
Schwartz AL, Ciechanover A. The ubiquitin-proteasome pathway and pathogenesis of human diseases. Annu Rev Med 1999; 50: 57–74
Pubmed
|
[3] |
Glickman MH, Ciechanover A. The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev 2002; 82(2): 373–428
CrossRef
Pubmed
Google scholar
|
[4] |
Bedford L, Hay D, Paine S, Rezvani N, Mee M, Lowe J, Mayer RJ. Is malfunction of the ubiquitin proteasome system the primary cause of alpha-synucleinopathies and other chronic human neurodegenerative disease? Biochim Biophys Acta 2008; 1782(12): 683–690
CrossRef
Pubmed
Google scholar
|
[5] |
Nedelsky NB, Todd PK, Taylor JP. Autophagy and the ubiquitin-proteasome system: collaborators in neuroprotection. Biochim Biophys Acta 2008; 1782(12): 691–699
CrossRef
Pubmed
Google scholar
|
[6] |
Whatley BR, Li L, Chin LS. The ubiquitin-proteasome system in spongiform degenerative disorders. Biochim Biophys Acta 2008; 1782(12): 700–712
CrossRef
Pubmed
Google scholar
|
[7] |
Murton AJ, Constantin D, Greenhaff PL. The involvement of the ubiquitin proteasome system in human skeletal muscle remodelling and atrophy. Biochim Biophys Acta 2008; 1782(12): 730–743
CrossRef
Pubmed
Google scholar
|
[8] |
Mearini G, Schlossarek S, Willis MS, Carrier L. The ubiquitin-proteasome system in cardiac dysfunction. Biochim Biophys Acta 2008; 1782(12): 749–763
CrossRef
Pubmed
Google scholar
|
[9] |
Rajan V, Mitch WE. Ubiquitin, proteasomes and proteolytic mechanisms activated by kidney disease. Biochim Biophys Acta 2008; 1782(12): 795–799
CrossRef
Pubmed
Google scholar
|
[10] |
Voutsadakis IA. The ubiquitin-proteasome system in colorectal cancer. Biochim Biophys Acta 2008; 1782(12): 800–808
CrossRef
Pubmed
Google scholar
|
[11] |
Varshavsky A. The N-end rule pathway and regulation by proteolysis. Protein Sci 2011; 20(8): 1298–1345
CrossRef
Pubmed
Google scholar
|
[12] |
Sriram SM, Kim BY, Kwon YT. The N-end rule pathway: emerging functions and molecular principles of substrate recognition. Nat Rev Mol Cell Biol 2011; 12(11): 735–747
CrossRef
Pubmed
Google scholar
|
[13] |
Bachmair A, Finley D, Varshavsky A. In vivo half-life of a protein is a function of its amino-terminal residue. Science 1986; 234(4773): 179–186
CrossRef
Pubmed
Google scholar
|
[14] |
Varshavsky A. The ubiquitin system, an immense realm. Annu Rev Biochem 2012; 81: 167–176
Pubmed
|
[15] |
Ellery KM, Erdman SH. Johanson‒Blizzard syndrome: expanding the phenotype of exocrine pancreatic insufficiency. JOP 2014; 15(4): 388–390
Pubmed
|
[16] |
Brower CS, Piatkov KI, Varshavsky A. Neurodegeneration-associated protein fragments as short-lived substrates of the N-end rule pathway. Mol Cell 2013; 50(2): 161–171
CrossRef
Pubmed
Google scholar
|
[17] |
Yamano K, Youle RJ. PINK1 is degraded through the N-end rule pathway. Autophagy 2013; 9(11): 1758–1769
CrossRef
Pubmed
Google scholar
|
[18] |
Atik T, Karakoyun M, Sukalo M, Zenker M, Ozkinay F, Aydoğdu S. Two novel UBR1 gene mutations in a patient with Johanson Blizzard Syndrome: a mild phenotype without mental retardation. Gene 2015; 570(1): 153–155
CrossRef
Pubmed
Google scholar
|
[19] |
Dougan DA, Micevski D, Truscott KN. The N-end rule pathway: from recognition by N-recognins to destruction by AAA+ proteases. Biochim Biophys Acta. 2012; 1823(1):83–91
CrossRef
Google scholar
|
[20] |
Gibbs DJ, Bacardit J, Bachmair A, Holdsworth MJ. The eukaryotic N-end rule pathway: conserved mechanisms and diverse functions. Trends Cell Biol 2014; 24(10): 603–611
Pubmed
|
[21] |
Hwang CS, Shemorry A, Auerbach D, Varshavsky A. The N-end rule pathway is mediated by a complex of the RING-type Ubr1 and HECT-type Ufd4 ubiquitin ligases. Nat Cell Biol 2010; 12(12): 1177–1185
Pubmed
|
[22] |
Kim HK, Kim RR, Oh JH, Cho H, Varshavsky A, Hwang CS. The N-terminal methionine of cellular proteins as a degradation signal. Cell 2014; 156(1-2): 158–169
Pubmed
|
[23] |
Tasaki T, Sriram SM, Park KS, Kwon YT. The N-end rule pathway. Annu Rev Biochem 2012; 81: 261–289
Pubmed
|
[24] |
Bachmair A, Varshavsky A. The degradation signal in a short-lived protein. Cell 1989; 56(6): 1019–1032
CrossRef
Pubmed
Google scholar
|
[25] |
Prakash S, Tian L, Ratliff KS, Lehotzky RE, Matouschek A. An unstructured initiation site is required for efficient proteasome-mediated degradation. Nat Struct Mol Biol 2004; 11(9): 830–837
CrossRef
Pubmed
Google scholar
|
[26] |
Suzuki T, Varshavsky A. Degradation signals in the lysine-asparagine sequence space. EMBO J 1999; 18(21): 6017–6026
CrossRef
Pubmed
Google scholar
|
[27] |
Hwang CS, Shemorry A, Varshavsky A. N-terminal acetylation of cellular proteins creates specific degradation signals. Science 2010; 327(5968): 973–977
CrossRef
Pubmed
Google scholar
|
[28] |
Shemorry A, Hwang CS, Varshavsky A. Control of protein quality and stoichiometries by N-terminal acetylation and the N-end rule pathway. Mol Cell 2013; 50(4): 540–551
CrossRef
Pubmed
Google scholar
|
[29] |
Frottin F, Martinez A, Peynot P, Mitra S, Holz RC, Giglione C, Meinnel T. The proteomics of N-terminal methionine cleavage. Mol Cell Proteomics 2006; 5(12): 2336–2349
CrossRef
Pubmed
Google scholar
|
[30] |
Park SE, Kim JM, Seok OH, Cho H, Wadas B, Kim SY, Varshavsky A, Hwang CS. Control of mammalian G protein signaling by N-terminal acetylation and the N-end rule pathway. Science 2015; 347(6227): 1249–1252
CrossRef
Pubmed
Google scholar
|
[31] |
Grigoryev S, Stewart AE, Kwon YT, Arfin SM, Bradshaw RA, Jenkins NA, Copeland NG, Varshavsky A. A mouse amidase specific for N-terminal asparagine. The gene, the enzyme, and their function in the N-end rule pathway. J Biol Chem 1996; 271(45): 28521–28532
CrossRef
Pubmed
Google scholar
|
[32] |
Kwon YT, Balogh SA, Davydov IV, Kashina AS, Yoon JK, Xie Y, Gaur A, Hyde L, Denenberg VH, Varshavsky A. Altered activity, social behavior, and spatial memory in mice lacking the NTAN1p amidase and the asparagine branch of the N-end rule pathway. Mol Cell Biol 2000; 20(11): 4135–4148
CrossRef
Pubmed
Google scholar
|
[33] |
Wang H, Piatkov KI, Brower CS, Varshavsky A. Glutamine-specific N-terminal amidase, a component of the N-end rule pathway. Mol Cell 2009; 34(6): 686–695
CrossRef
Pubmed
Google scholar
|
[34] |
Lee KE, Heo JE, Kim JM, Hwang CS. N-terminal acetylation-targeted N-end rule proteolytic system: the Ac/N-end rule pathway. Mol Cells 2016; 39(3): 169–178
CrossRef
Pubmed
Google scholar
|
[35] |
Hu RG, Sheng J, Qi X, Xu Z, Takahashi TT, Varshavsky A. The N-end rule pathway as a nitric oxide sensor controlling the levels of multiple regulators. Nature 2005; 437(7061): 981–986
CrossRef
Pubmed
Google scholar
|
[36] |
Kwon YT, Kashina AS, Davydov IV, Hu RG, An JY, Seo JW, Du F, Varshavsky A. An essential role of N-terminal arginylation in cardiovascular development. Science 2002; 297(5578): 96–99
CrossRef
Pubmed
Google scholar
|
[37] |
Lee MJ, Tasaki T, Moroi K, An JY, Kimura S, Davydov IV, Kwon YT. RGS4 and RGS5 are in vivo substrates of the N-end rule pathway. Proc Natl Acad Sci U S A 2005; 102(42): 15030–15035
CrossRef
Pubmed
Google scholar
|
[38] |
Balzi E, Choder M, Chen WN, Varshavsky A, Goffeau A. Cloning and functional analysis of the arginyl-tRNA-protein transferase gene ATE1 of Saccharomyces cerevisiae. J Biol Chem 1990; 265(13): 7464–7471
Pubmed
|
[39] |
Li J, Pickart CM. Binding of phenylarsenoxide to Arg-tRNA protein transferase is independent of vicinal thiols. Biochemistry 1995; 34(48): 15829–15837
CrossRef
Pubmed
Google scholar
|
[40] |
Varshavsky A. The N-end rule: functions, mysteries, uses. Proc Natl Acad Sci U S A 1996; 93(22): 12142–12149
CrossRef
Pubmed
Google scholar
|
[41] |
Tasaki T, Zakrzewska A, Dudgeon DD, Jiang Y, Lazo JS, Kwon YT. The substrate recognition domains of the N-end rule pathway. J Biol Chem 2009; 284(3): 1884–1895
CrossRef
Pubmed
Google scholar
|
[42] |
Tasaki T, Kwon YT. The mammalian N-end rule pathway: new insights into its components and physiological roles. Trends Biochem Sci 2007; 32(11): 520–528
CrossRef
Pubmed
Google scholar
|
[43] |
Mogk A, Schmidt R, Bukau B. The N-end rule pathway for regulated proteolysis: prokaryotic and eukaryotic strategies. Trends Cell Biol 2007; 17(4): 165–172
CrossRef
Pubmed
Google scholar
|
[44] |
Starheim KK, Gevaert K, Arnesen T. Protein N-terminal acetyltransferases: when the start matters. Trends Biochem Sci 2012; 37(4): 152–161
CrossRef
Pubmed
Google scholar
|
[45] |
Van Damme P, Hole K, Pimenta-Marques A, Helsens K, Vandekerckhove J, Martinho RG, Gevaert K, Arnesen T. NatF contributes to an evolutionary shift in protein N-terminal acetylation and is important for normal chromosome segregation. PLoS Genet 2011; 7(7): e1002169
CrossRef
Pubmed
Google scholar
|
[46] |
Johnson ES, Bartel B, Seufert W, Varshavsky A. Ubiquitin as a degradation signal. EMBO J 1992; 11(2): 497–505
Pubmed
|
[47] |
Johnson ES, Ma PC, Ota IM, Varshavsky A. A proteolytic pathway that recognizes ubiquitin as a degradation signal. J Biol Chem 1995; 270(29): 17442–17456
CrossRef
Pubmed
Google scholar
|
[48] |
Arfin SM, Bradshaw RA. Cotranslational processing and protein turnover in eukaryotic cells. Biochemistry 1988; 27(21): 7979–7984
CrossRef
Pubmed
Google scholar
|
[49] |
Kendall RL, Bradshaw RA. Isolation and characterization of the methionine aminopeptidase from porcine liver responsible for the co-translational processing of proteins. J Biol Chem 1992; 267(29): 20667–20673
Pubmed
|
[50] |
Rao H, Uhlmann F, Nasmyth K, Varshavsky A. Degradation of a cohesin subunit by the N-end rule pathway is essential for chromosome stability. Nature 2001; 410(6831): 955–959
CrossRef
Pubmed
Google scholar
|
[51] |
Uhlmann F, Lottspeich F, Nasmyth K. Sister-chromatid separation at anaphase onset is promoted by cleavage of the cohesin subunit Scc1. Nature 1999; 400(6739): 37–42
CrossRef
Pubmed
Google scholar
|
[52] |
Hauf S, Waizenegger IC, Peters JM. Cohesin cleavage by separase required for anaphase and cytokinesis in human cells. Science 2001; 293(5533): 1320–1323
CrossRef
Pubmed
Google scholar
|
[53] |
Liu YJ, Liu C, Chang Z, Wadas B, Brower CS, Song ZH, Xu ZL, Shang YL, Liu WX, Wang LN, Dong W, Varshavsky A, Hu RG, Li W. Degradation of the separase-cleaved Rec8, a meiotic cohesin subunit, by the N-end rule pathway. J Biol Chem 2016; 291(14): 7426–7438
CrossRef
Pubmed
Google scholar
|
[54] |
Xu Z, Payoe R, Fahlman RP. The C-terminal proteolytic fragment of the breast cancer susceptibility type 1 protein (BRCA1) is degraded by the N-end rule pathway. J Biol Chem 2012; 287(10): 7495–7502
CrossRef
Pubmed
Google scholar
|
[55] |
Piatkov KI, Brower CS, Varshavsky A. The N-end rule pathway counteracts cell death by destroying proapoptotic protein fragments. Proc Natl Acad Sci U S A 2012; 109(27): E1839–E1847
CrossRef
Pubmed
Google scholar
|
[56] |
Gavel Y, von Heijne G. Cleavage-site motifs in mitochondrial targeting peptides. Protein Eng 1990; 4(1): 33–37
CrossRef
Pubmed
Google scholar
|
[57] |
Neupert W, Herrmann JM. Translocation of proteins into mitochondria. Annu Rev Biochem 2007; 76: 723–749
Pubmed
|
[58] |
Jin SM, Lazarou M, Wang C, Kane LA, Narendra DP, Youle RJ. Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL. J Cell Biol 2010; 191(5): 933–942
CrossRef
Pubmed
Google scholar
|
[59] |
Shi G, Lee JR, Grimes DA, Racacho L, Ye D, Yang H, Ross OA, Farrer M, McQuibban GA, Bulman DE. Functional alteration of PARL contributes to mitochondrial dysregulation in Parkinson’s disease. Hum Mol Genet 2011; 20(10): 1966–1974
CrossRef
Pubmed
Google scholar
|
[60] |
Greene AW, Grenier K, Aguileta MA, Muise S, Farazifard R, Haque ME, McBride HM, Park DS, Fon EA. Mitochondrial processing peptidase regulates PINK1 processing, import and Parkin recruitment. EMBO Rep 2012; 13(4): 378–385
CrossRef
Pubmed
Google scholar
|
[61] |
Hennessey ES, Drummond DR, Sparrow JC. Post-translational processing of the amino terminus affects actin function. Eur J Biochem 1991; 197(2): 345–352
CrossRef
Pubmed
Google scholar
|
[62] |
Sheff DR, Rubenstein PA. Identification of N-acetylmethionine as the product released during the NH2-terminal processing of a pseudo-class I actin. J Biol Chem 1989; 264(19): 11491–11496
Pubmed
|
[63] |
Karakozova M, Kozak M, Wong CC, Bailey AO, Yates JR 3rd, Mogilner A, Zebroski H, Kashina A. Arginylation of β-actin regulates actin cytoskeleton and cell motility. Science 2006; 313(5784): 192–196
CrossRef
Pubmed
Google scholar
|
[64] |
Hu RG, Wang H, Xia Z, Varshavsky A. The N-end rule pathway is a sensor of heme. Proc Natl Acad Sci U S A 2008; 105(1): 76–81
CrossRef
Pubmed
Google scholar
|
[65] |
Eisele F, Wolf DH. Degradation of misfolded protein in the cytoplasm is mediated by the ubiquitin ligase Ubr1. FEBS Lett 2008; 582(30): 4143–4146
CrossRef
Pubmed
Google scholar
|
[66] |
Sultana R, Theodoraki MA, Caplan AJ. UBR1 promotes protein kinase quality control and sensitizes cells to Hsp90 inhibition. Exp Cell Res 2012; 318(1): 53–60
CrossRef
Pubmed
Google scholar
|
[67] |
Hwang CS, Shemorry A, Varshavsky A. Two proteolytic pathways regulate DNA repair by cotargeting the Mgt1 alkylguanine transferase. Proc Natl Acad Sci U S A 2009; 106(7): 2142–2147
CrossRef
Pubmed
Google scholar
|
[68] |
Hwang CS, Shemorry A, Auerbach D, Varshavsky A. The N-end rule pathway is mediated by a complex of the RING-type Ubr1 and HECT-type Ufd4 ubiquitin ligases. Nat Cell Biol 2010; 12(12): 1177–1185
CrossRef
Pubmed
Google scholar
|
[69] |
Byrd C, Turner GC, Varshavsky A. The N-end rule pathway controls the import of peptides through degradation of a transcriptional repressor. EMBO J 1998; 17(1): 269–277
CrossRef
Pubmed
Google scholar
|
[70] |
Xia Z, Turner GC, Hwang CS, Byrd C, Varshavsky A. Amino acids induce peptide uptake via accelerated degradation of CUP9, the transcriptional repressor of the PTR2 peptide transporter. J Biol Chem 2008; 283(43): 28958–28968
CrossRef
Pubmed
Google scholar
|
[71] |
Graciet E, Wellmer F. The plant N-end rule pathway: structure and functions. Trends Plant Sci 2010; 15(8): 447–453
CrossRef
Pubmed
Google scholar
|
[72] |
Zhang H, Deery MJ, Gannon L, Powers SJ, Lilley KS, Theodoulou FL. Quantitative proteomics analysis of the Arg/N-end rule pathway of targeted degradation in Arabidopsis roots. Proteomics 2015; 15(14): 2447–2457
CrossRef
Pubmed
Google scholar
|
[73] |
Piatkov KI, Oh JH, Liu Y, Varshavsky A. Calpain-generated natural protein fragments as short-lived substrates of the N-end rule pathway. Proc Natl Acad Sci U S A 2014; 111(9): E817–E826
CrossRef
Pubmed
Google scholar
|
[74] |
Brower CS, Varshavsky A. Ablation of arginylation in the mouse N-end rule pathway: loss of fat, higher metabolic rate, damaged spermatogenesis, and neurological perturbations. PLoS One 2009; 4(11): e7757
CrossRef
Pubmed
Google scholar
|
[75] |
Zenker M, Mayerle J, Lerch MM, Tagariello A, Zerres K, Durie PR, Beier M, Hülskamp G, Guzman C, Rehder H, Beemer FA, Hamel B, Vanlieferinghen P, Gershoni-Baruch R, Vieira MW, Dumic M, Auslender R, Gil-da-Silva-Lopes VL, Steinlicht S, Rauh M, Shalev SA, Thiel C, Ekici AB, Winterpacht A, Kwon YT, Varshavsky A, Reis A. Deficiency of UBR1, a ubiquitin ligase of the N-end rule pathway, causes pancreatic dysfunction, malformations and mental retardation (Johanson‒Blizzard syndrome). Nat Genet 2005; 37(12): 1345–1350
CrossRef
Pubmed
Google scholar
|
[76] |
Dolatshad NF, Hellen N, Jabbour RJ, Harding SE, Földes G. G-protein coupled receptor signaling in pluripotent stem cell-derived cardiovascular cells: implications for disease modeling. Front Cell Dev Biol 2015; 3: 76 PMID:26697426
|
[77] |
Branco AF, Allen BG. G protein-coupled receptor signaling in cardiac nuclear membranes. J Cardiovasc Pharmacol 2015; 65(2): 101–109
CrossRef
Pubmed
Google scholar
|
[78] |
Sato PY, Chuprun JK, Schwartz M, Koch WJ. The evolving impact of G protein-coupled receptor kinases in cardiac health and disease. Physiol Rev 2015; 95(2): 377–404
CrossRef
Pubmed
Google scholar
|
[79] |
Tamirisa P, Blumer KJ, Muslin AJ. RGS4 inhibits G-protein signaling in cardiomyocytes. Circulation 1999; 99(3): 441–447
CrossRef
Pubmed
Google scholar
|
[80] |
Lee MJ, Kim DE, Zakrzewska A, Yoo YD, Kim SH, Kim ST, Seo JW, Lee YS, Dorn GW 2nd, Oh U, Kim BY, Kwon YT. Characterization of arginylation branch of N-end rule pathway in G-protein-mediated proliferation and signaling of cardiomyocytes. J Biol Chem 2012; 287(28): 24043–24052
CrossRef
Pubmed
Google scholar
|
[81] |
An JY, Seo JW, Tasaki T, Lee MJ, Varshavsky A, Kwon YT. Impaired neurogenesis and cardiovascular development in mice lacking the E3 ubiquitin ligases UBR1 and UBR2 of the N-end rule pathway. Proc Natl Acad Sci U S A 2006; 103(16): 6212–6217
CrossRef
Pubmed
Google scholar
|
[82] |
Heximer SP, Knutsen RH, Sun X, Kaltenbronn KM, Rhee MH, Peng N, Oliveira-dos-Santos A, Penninger JM, Muslin AJ, Steinberg TH, Wyss JM, Mecham RP, Blumer KJ. Hypertension and prolonged vasoconstrictor signaling in RGS2-deficient mice. J Clin Invest 2003; 111(4): 445–452
CrossRef
Pubmed
Google scholar
|
[83] |
Kimple AJ, Bosch DE, Giguère PM, Siderovski DP. Regulators of G-protein signaling and their Ga substrates: promises and challenges in their use as drug discovery targets. Pharmacol Rev 2011; 63(3): 728–749
CrossRef
Pubmed
Google scholar
|
[84] |
Nance MR, Kreutz B, Tesmer VM, Sterne-Marr R, Kozasa T, Tesmer JJ. Structural and functional analysis of the regulator of G protein signaling 2-gaq complex. Structure 2013; 21(3): 438–448
CrossRef
Pubmed
Google scholar
|
[85] |
Yang J, Kamide K, Kokubo Y, Takiuchi S, Tanaka C, Banno M, Miwa Y, Yoshii M, Horio T, Okayama A, Tomoike H, Kawano Y, Miyata T. Genetic variations of regulator of G-protein signaling 2 in hypertensive patients and in the general population. J Hypertens 2005; 23(8): 1497–1505
CrossRef
Pubmed
Google scholar
|
[86] |
Kurosaka S, Leu NA, Pavlov I, Han X, Ribeiro PA, Xu T, Bunte R, Saha S, Wang J, Cornachione A, Mai W, Yates JR 3rd, Rassier DE, Kashina A. Arginylation regulates myofibrils to maintain heart function and prevent dilated cardiomyopathy. J Mol Cell Cardiol 2012; 53(3): 333–341
CrossRef
Pubmed
Google scholar
|
[87] |
Götz M, Huttner WB. The cell biology of neurogenesis. Nat Rev Mol Cell Biol 2005; 6(10): 777–788
CrossRef
Pubmed
Google scholar
|
[88] |
Petronczki M, Siomos MF, Nasmyth K. Un ménage à quatre: the molecular biology of chromosome segregation in meiosis. Cell 2003; 112(4): 423–440
CrossRef
Pubmed
Google scholar
|
[89] |
Zickler D, Kleckner N. Recombination, pairing, and synapsis of homologs during meiosis. Cold Spring Harb Perspect Biol 2015; 7(6): a016626
CrossRef
Pubmed
Google scholar
|
[90] |
Kudo NR, Wassmann K, Anger M, Schuh M, Wirth KG, Xu H, Helmhart W, Kudo H, McKay M, Maro B, Ellenberg J, de Boer P, Nasmyth K. Resolution of chiasmata in oocytes requires separase-mediated proteolysis. Cell 2006; 126(1): 135–146
CrossRef
Pubmed
Google scholar
|
[91] |
Nasmyth K, Haering CH. The structure and function of SMC and kleisin complexes. Annu Rev Biochem 2005; 74: 595–648
Pubmed
|
[92] |
Kwon YT, Xia Z, Davydov IV, Lecker SH, Varshavsky A. Construction and analysis of mouse strains lacking the ubiquitin ligase UBR1 (E3α) of the N-end rule pathway. Mol Cell Biol 2001; 21(23): 8007–8021
CrossRef
Pubmed
Google scholar
|
[93] |
Kwon YT, Xia Z, An JY, Tasaki T, Davydov IV, Seo JW, Sheng J, Xie Y, Varshavsky A. Female lethality and apoptosis of spermatocytes in mice lacking the UBR2 ubiquitin ligase of the N-end rule pathway. Mol Cell Biol 2003; 23(22): 8255–8271
CrossRef
Pubmed
Google scholar
|
[94] |
An JY, Kim E, Zakrzewska A, Yoo YD, Jang JM, Han DH, Lee MJ, Seo JW, Lee YJ, Kim TY, de Rooij DG, Kim BY, Kwon YT. UBR2 of the N-end rule pathway is required for chromosome stability via histone ubiquitylation in spermatocytes and somatic cells. PLoS One 2012; 7(5): e37414
CrossRef
Pubmed
Google scholar
|
[95] |
An JY, Kim EA, Jiang Y, Zakrzewska A, Kim DE, Lee MJ, Mook-Jung I, Zhang Y, Kwon YT. UBR2 mediates transcriptional silencing during spermatogenesis via histone ubiquitination. Proc Natl Acad Sci U S A 2010; 107(5): 1912–1917
CrossRef
Pubmed
Google scholar
|
[96] |
Turner JM, Mahadevaiah SK, Fernandez-Capetillo O, Nussenzweig A, Xu X, Deng CX, Burgoyne PS. Silencing of unsynapsed meiotic chromosomes in the mouse. Nat Genet 2005; 37(1): 41–47
Pubmed
|
[97] |
Schimenti J. Synapsis or silence. Nat Genet 2005; 37(1): 11–13
CrossRef
Pubmed
Google scholar
|
[98] |
Handel MA. The XY body: a specialized meiotic chromatin domain. Exp Cell Res 2004; 296(1): 57–63
CrossRef
Pubmed
Google scholar
|
[99] |
Monesi V. Differential rate of ribonucleic acid synthesis in the autosomes and sex chromosomes during male meiosis in the mouse. Chromosoma 1965; 17(1): 11–21
CrossRef
Pubmed
Google scholar
|
[100] |
Turner JM. Meiotic sex chromosome inactivation. Development 2007; 134(10): 1823–1831
CrossRef
Pubmed
Google scholar
|
[101] |
Cloutier JM, Turner JM. Meiotic sex chromosome inactivation. Curr Biol 2010; 20(22): R962–R963
CrossRef
Pubmed
Google scholar
|
[102] |
Roest HP, van Klaveren J, de Wit J, van Gurp CG, Koken MH, Vermey M, van Roijen JH, Hoogerbrugge JW, Vreeburg JT, Baarends WM, Bootsma D, Grootegoed JA, Hoeijmakers JH. Inactivation of the HR6B ubiquitin-conjugating DNA repair enzyme in mice causes male sterility associated with chromatin modification. Cell 1996; 86(5): 799–810
CrossRef
Pubmed
Google scholar
|
[103] |
Buonomo SB, Clyne RK, Fuchs J, Loidl J, Uhlmann F, Nasmyth K. Disjunction of homologous chromosomes in meiosis I depends on proteolytic cleavage of the meiotic cohesin Rec8 by separin. Cell 2000; 103(3): 387–398
CrossRef
Pubmed
Google scholar
|
[104] |
Kitajima TS, Miyazaki Y, Yamamoto M, Watanabe Y. Rec8 cleavage by separase is required for meiotic nuclear divisions in fission yeast. EMBO J 2003; 22(20): 5643–5653
CrossRef
Pubmed
Google scholar
|
[105] |
Uhlmann F, Wernic D, Poupart MA, Koonin EV, Nasmyth K. Cleavage of cohesin by the CD clan protease separin triggers anaphase in yeast. Cell 2000; 103(3): 375–386
CrossRef
Pubmed
Google scholar
|
[106] |
Waizenegger IC, Hauf S, Meinke A, Peters JM. Two distinct pathways remove mammalian cohesin from chromosome arms in prophase and from centromeres in anaphase. Cell 2000; 103(3): 399–410
CrossRef
Pubmed
Google scholar
|
[107] |
Johanson A, Blizzard R. A syndrome of congenital aplasia of the alae nasi, deafness, hypothyroidism, dwarfism, absent permanent teeth, and malabsorption. J Pediatr 1971; 79(6): 982–987
CrossRef
Pubmed
Google scholar
|
[108] |
Sukalo M, Fiedler A, Guzmán C, Spranger S, Addor MC, McHeik JN, Oltra Benavent M, Cobben JM, Gillis LA, Shealy AG, Deshpande C, Bozorgmehr B, Everman DB, Stattin EL, Liebelt J, Keller KM, Bertola DR, van Karnebeek CDM, Bergmann C, Liu Z, Düker G, Rezaei N, Alkuraya FS, Oğur G, Alrajoudi A, Venegas-Vega CA, Verbeek NE, Richmond EJ, Kirbiyik O, Ranganath P, Singh A, Godbole K, Ali FAM, Alves C, Mayerle J, Lerch MM, Witt H, Zenker M. Mutations in the human UBR1 gene and the associated phenotypic spectrum. Hum Mutat 2014; 35(5): 521–531
CrossRef
Pubmed
Google scholar
|
[109] |
Quaio CR, Koda YK, Bertola DR, Sukalo M, Zenker M, Kim CA. Johanson‒Blizzard syndrome: a report of gender-discordant twins with a novel UBR1 mutation. Genet Mol Res 2014; 13(2): 4159–4164PMID:25036160
CrossRef
Google scholar
|
[110] |
Hwang CS, Sukalo M, Batygin O, Addor MC, Brunner H, Aytes AP, Mayerle J, Song HK, Varshavsky A, Zenker M. Ubiquitin ligases of the N-end rule pathway: assessment of mutations in UBR1 that cause the Johanson‒Blizzard syndrome. PLoS One 2011; 6(9): e24925
CrossRef
Pubmed
Google scholar
|
[111] |
Quintás-Cardama A, Kantarjian H, Cortes J. Imatinib and beyond — exploring the full potential of targeted therapy for CML. Nat Rev Clin Oncol 2009; 6(9): 535–543
CrossRef
Pubmed
Google scholar
|
[112] |
Eldeeb MA, Fahlman RP. The anti-apoptotic form of tyrosine kinase Lyn that is generated by proteolysis is degraded by the N-end rule pathway. Oncotarget 2014; 5(9): 2714–2722
CrossRef
Pubmed
Google scholar
|
[113] |
Hayette S, Chabane K, Michallet M, Michallat E, Cony-Makhoul P, Salesse S, Maguer-Satta V, Magaud JP, Nicolini FE. Longitudinal studies of SRC family kinases in imatinib- and dasatinib-resistant chronic myelogenous leukemia patients. Leuk Res 2011; 35(1): 38–43
CrossRef
Pubmed
Google scholar
|
[114] |
Donato NJ, Wu JY, Stapley J, Gallick G, Lin H, Arlinghaus R, Talpaz M. BCR-ABL independence and LYN kinase overexpression in chronic myelogenous leukemia cells selected for resistance to STI571. Blood 2003; 101(2): 690–698
CrossRef
Pubmed
Google scholar
|
[115] |
Luciano F, Herrant M, Jacquel A, Ricci JE, Auberger P. The p54 cleaved form of the tyrosine kinase Lyn generated by caspases during BCR-induced cell death in B lymphoma acts as a negative regulator of apoptosis. FASEB J 2003; 17(6): 711–713
Pubmed
|
[116] |
Gamas P, Marchetti S, Puissant A, Grosso S, Jacquel A, Colosetti P, Pasquet JM, Mahon FX, Cassuto JP, Auberger P. Inhibition of imatinib-mediated apoptosis by the caspase-cleaved form of the tyrosine kinase Lyn in chronic myelogenous leukemia cells. Leukemia 2009; 23(8): 1500–1506
CrossRef
Pubmed
Google scholar
|
[117] |
Luciano F, Ricci JE, Auberger P. Cleavage of Fyn and Lyn in their N-terminal unique regions during induction of apoptosis: a new mechanism for Src kinase regulation. Oncogene 2001; 20(36): 4935–4941
CrossRef
Pubmed
Google scholar
|
[118] |
Chen E, Kwon YT, Lim MS, Dubé ID, Hough MR. Loss of Ubr1 promotes aneuploidy and accelerates B-cell lymphomagenesis in TLX1/HOX11-transgenic mice. Oncogene 2006; 25(42): 5752–5763
CrossRef
Pubmed
Google scholar
|
[119] |
Yin J, Kwon YT, Varshavsky A, Wang W. RECQL4, mutated in the Rothmund‒Thomson and RAPADILINO syndromes, interacts with ubiquitin ligases UBR1 and UBR2 of the N-end rule pathway. Hum Mol Genet 2004; 13(20): 2421–2430
CrossRef
Pubmed
Google scholar
|
[120] |
Kwak KS, Zhou X, Solomon V, Baracos VE, Davis J, Bannon AW, Boyle WJ, Lacey DL, Han HQ. Regulation of protein catabolism by muscle-specific and cytokine-inducible ubiquitin ligase E3α-II during cancer cachexia. Cancer Res 2004; 64(22): 8193–8198
CrossRef
Pubmed
Google scholar
|
[121] |
Rai R, Zhang F, Colavita K, Leu NA, Kurosaka S, Kumar A, Birnbaum MD, Győrffy B, Dong DW, Shtutman M, Kashina A. Arginyltransferase suppresses cell tumorigenic potential and inversely correlates with metastases in human cancers. Oncogene 2015 Dec 21. [Epub ahead of print]PMID:26686093
CrossRef
Google scholar
|
[122] |
Eisenberg D, Jucker M. The amyloid state of proteins in human diseases. Cell 2012; 148(6): 1188–1203
CrossRef
Pubmed
Google scholar
|
[123] |
Lindquist SL, Kelly JW. Chemical and biological approaches for adapting proteostasis to ameliorate protein misfolding and aggregation diseases: progress and prognosis. Cold Spring Harb Perspect Biol 2011; 3(12): a004507
CrossRef
Pubmed
Google scholar
|
[124] |
Selkoe DJ. Alzheimer’s disease. Cold Spring Harb Perspect Biol 2011; 3(7): a004457
CrossRef
Pubmed
Google scholar
|
[125] |
Huang Y, Mucke L. Alzheimer mechanisms and therapeutic strategies. Cell 2012; 148(6): 1204–1222
CrossRef
Pubmed
Google scholar
|
[126] |
Garg S, Timm T, Mandelkow EM, Mandelkow E, Wang Y. Cleavage of Tau by calpain in Alzheimer’s disease: the quest for the toxic 17 kD fragment. Neurobiol Aging 2011; 32(1): 1–14
CrossRef
Pubmed
Google scholar
|
[127] |
Zilka N, Kovacech B, Barath P, Kontsekova E, Novák M. The self-perpetuating tau truncation circle. Biochem Soc Trans 2012; 40(4): 681–686
CrossRef
Pubmed
Google scholar
|
[128] |
Rochet JC, Hay BA, Guo M. Molecular insights into Parkinson’s disease. Prog Mol Biol Transl Sci 2012; 107: 125–188
Pubmed
|
[129] |
Cremades N, Cohen SI, Deas E, Abramov AY, Chen AY, Orte A, Sandal M, Clarke RW, Dunne P, Aprile FA, Bertoncini CW, Wood NW, Knowles TP, Dobson CM, Klenerman D. Direct observation of the interconversion of normal and toxic forms of a-synuclein. Cell 2012; 149(5): 1048–1059
CrossRef
Pubmed
Google scholar
|
[130] |
Choi DH, Kim YJ, Kim YG, Joh TH, Beal MF, Kim YS. Role of matrix metalloproteinase 3-mediated α-synuclein cleavage in dopaminergic cell death. J Biol Chem 2011; 286(16): 14168–14177
CrossRef
Pubmed
Google scholar
|
[131] |
Levin J, Giese A, Boetzel K, Israel L, Högen T, Nübling G, Kretzschmar H, Lorenzl S. Increased alpha-synuclein aggregation following limited cleavage by certain matrix metalloproteinases. Exp Neurol 2009; 215(1): 201–208
CrossRef
Pubmed
Google scholar
|
[132] |
Lee EB, Lee VM, Trojanowski JQ. Gains or losses: molecular mechanisms of TDP43-mediated neurodegeneration. Nat Rev Neurosci 2012; 13(1): 38–50
Pubmed
|
[133] |
Igaz LM, Kwong LK, Chen-Plotkin A, Winton MJ, Unger TL, Xu Y, Neumann M, Trojanowski JQ, Lee VM. Expression of TDP-43 C-terminal fragments in vitro recapitulates pathological features of TDP-43 proteinopathies. J Biol Chem 2009; 284(13): 8516–8524
CrossRef
Pubmed
Google scholar
|
[134] |
Nonaka T, Kametani F, Arai T, Akiyama H, Hasegawa M. Truncation and pathogenic mutations facilitate the formation of intracellular aggregates of TDP-43. Hum Mol Genet 2009; 18(18): 3353–3364
CrossRef
Pubmed
Google scholar
|
[135] |
Pesiridis GS, Tripathy K, Tanik S, Trojanowski JQ, Lee VM. A “two-hit” hypothesis for inclusion formation by carboxyl-terminal fragments of TDP-43 protein linked to RNA depletion and impaired microtubule-dependent transport. J Biol Chem 2011; 286(21): 18845–18855
CrossRef
Pubmed
Google scholar
|
[136] |
Palomo GM, Manfredi G. Exploring new pathways of neurodegeneration in ALS: the role of mitochondria quality control. Brain Res 2015; 1607: 36–46
Pubmed
|
[137] |
Schon EA, Przedborski S. Mitochondria: the next (neurode)generation. Neuron 2011; 70(6): 1033–1053
CrossRef
Pubmed
Google scholar
|
[138] |
Narendra DP, Jin SM, Tanaka A, Suen DF, Gautier CA, Shen J, Cookson MR, Youle RJ. PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol 2010; 8(1): e1000298
CrossRef
Pubmed
Google scholar
|
[139] |
Vives-Bauza C, Zhou C, Huang Y, Cui M, de Vries RL, Kim J, May J, Tocilescu MA, Liu W, Ko HS, Magrané J, Moore DJ, Dawson VL, Grailhe R, Dawson TM, Li C, Tieu K, Przedborski S. PINK1-dependent recruitment of Parkin to mitochondria in mitophagy. Proc Natl Acad Sci U S A 2010; 107(1): 378–383
CrossRef
Pubmed
Google scholar
|
[140] |
Narendra D, Tanaka A, Suen DF, Youle RJ. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol 2008; 183(5): 795–803
CrossRef
Pubmed
Google scholar
|
[141] |
Park J, Lee SB, Lee S, Kim Y, Song S, Kim S, Bae E, Kim J, Shong M, Kim JM, Chung J. Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature 2006; 441(7097): 1157–1161
CrossRef
Pubmed
Google scholar
|
[142] |
Kwon YT, Lévy F, Varshavsky A. Bivalent inhibitor of the N-end rule pathway. J Biol Chem 1999; 274(25): 18135–18139
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |