Resistance to receptor tyrosine kinase inhibition in cancer: molecular mechanisms and therapeutic strategies
Peter B. Alexander, Xiao-Fan Wang
Resistance to receptor tyrosine kinase inhibition in cancer: molecular mechanisms and therapeutic strategies
Drug resistance is a major factor that limits the efficacy of targeted cancer therapies. In this review, we discuss the main known mechanisms of resistance to receptor tyrosine kinase inhibitors, which are the most prevalent class of targeted therapeutic agent in current clinical use. Here we focus on bypass track resistance, which involves the activation of alternate signaling molecules by tumor cells to bypass inhibition and maintain signaling output, and consider the problems of signaling pathway redundancy and how the activation of different receptor tyrosine kinases translates into intracellular signal transduction in different cancer types. This information is presented in the context of research strategies for the discovery of new targets for pharmacological intervention, with the goal of overcoming resistance in order to improve patient outcomes.
targeted therapy / drug resistance / receptor tyrosine kinases / cancer
[1] |
Weinstein IB, Joe A, Felsher D. Oncogene addiction. Cancer Res2008; 68(9): 3077-3080, discussion 3080
CrossRef
Pubmed
Google scholar
|
[2] |
Sawyers C. Targeted cancer therapy. Nature2004; 432(7015): 294-297
CrossRef
Pubmed
Google scholar
|
[3] |
Lemmon MA, Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell2010; 141(7): 1117-1134
CrossRef
Pubmed
Google scholar
|
[4] |
Chong CR, Jänne PA. The quest to overcome resistance to EGFR-targeted therapies in cancer. Nat Med2013; 19(11): 1389-1400
CrossRef
Pubmed
Google scholar
|
[5] |
Holohan C, Van Schaeybroeck S, Longley DB, Johnston PG. Cancer drug resistance: an evolving paradigm. Nat Rev Cancer2013; 13(10): 714-726
CrossRef
Pubmed
Google scholar
|
[6] |
Gainor JF, Shaw AT. Emerging paradigms in the development of resistance to tyrosine kinase inhibitors in lung cancer. J Clin Oncol2013; 31(31): 3987-3996
CrossRef
Pubmed
Google scholar
|
[7] |
Groenendijk FH, Bernards R. Drug resistance to targeted therapies: déjà vu all over again. Mol Oncol2014; 8(6): 1067-1083
CrossRef
Pubmed
Google scholar
|
[8] |
Sun C, Bernards R. Feedback and redundancy in receptor tyrosine kinase signaling: relevance to cancer therapies. Trends Biochem Sci2014; 39(10): 465-474
CrossRef
Pubmed
Google scholar
|
[9] |
Ercan D, Zejnullahu K, Yonesaka K, Xiao Y, Capelletti M, Rogers A, Lifshits E, Brown A, Lee C, Christensen JG, Kwiatkowski DJ, Engelman JA, Jänne PA. Amplification of EGFR T790M causes resistance to an irreversible EGFR inhibitor. Oncogene2010; 29(16): 2346-2356
CrossRef
Pubmed
Google scholar
|
[10] |
Sequist LV, Waltman BA, Dias-Santagata D, Digumarthy S, Turke AB, Fidias P, Bergethon K, Shaw AT, Gettinger S, Cosper AK, Akhavanfard S, Heist RS, Temel J, Christensen JG, Wain JC, Lynch TJ, Vernovsky K, Mark EJ, Lanuti M, Iafrate AJ, Mino-Kenudson M, Engelman JA. Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Sci Transl Med2011; 3(75): 75ra26
CrossRef
Pubmed
Google scholar
|
[11] |
Katayama R, Shaw AT, Khan TM, Mino-Kenudson M, Solomon BJ, Halmos B, Jessop NA, Wain JC, Yeo AT, Benes C, Drew L, Saeh JC, Crosby K, Sequist LV, Iafrate AJ, Engelman JA. Mechanisms of acquired crizotinib resistance in ALK-rearranged lung Cancers. Sci Transl Med2012; 4(120): 120ra17
CrossRef
Pubmed
Google scholar
|
[12] |
Doebele RC, Pilling AB, Aisner DL, Kutateladze TG, Le AT, Weickhardt AJ, Kondo KL, Linderman DJ, Heasley LE, Franklin WA, Varella-Garcia M, Camidge DR. Mechanisms of resistance to crizotinib in patients with ALK gene rearranged non-small cell lung cancer. Clin Cancer Res2012; 18(5): 1472-1482
CrossRef
Pubmed
Google scholar
|
[13] |
Yun CH, Mengwasser KE, Toms AV, Woo MS, Greulich H, Wong KK, Meyerson M, Eck MJ. The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP. Proc Natl Acad Sci USA2008; 105(6): 2070-2075
CrossRef
Pubmed
Google scholar
|
[14] |
Niederst MJ, Engelman JA. Bypass mechanisms of resistance to receptor tyrosine kinase inhibition in lung cancer. Sci Signal2013; 6(294): re6
CrossRef
Pubmed
Google scholar
|
[15] |
Engelman JA, Zejnullahu K, Mitsudomi T, Song Y, Hyland C, Park JO, Lindeman N, Gale CM, Zhao X, Christensen J, Kosaka T, Holmes AJ, Rogers AM, Cappuzzo F, Mok T, Lee C, Johnson BE, Cantley LC, Jänne PA. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science2007; 316(5827): 1039-1043
CrossRef
Pubmed
Google scholar
|
[16] |
Bean J, Brennan C, Shih JY, Riely G, Viale A, Wang L, Chitale D, Motoi N, Szoke J, Broderick S, Balak M, Chang WC, Yu CJ, Gazdar A, Pass H, Rusch V, Gerald W, Huang SF, Yang PC, Miller V, Ladanyi M, Yang CH, Pao W. MET amplification occurs with or without T790M mutations in EGFR mutant lung tumors with acquired resistance to gefitinib or erlotinib. Proc Natl Acad Sci USA2007; 104(52): 20932-20937
CrossRef
Pubmed
Google scholar
|
[17] |
Lu Y, Zi X, Zhao Y, Mascarenhas D, Pollak M. Insulin-like growth factor-I receptor signaling and resistance to trastuzumab (Herceptin). J Natl Cancer Inst2001; 93(24): 1852-1857
CrossRef
Pubmed
Google scholar
|
[18] |
Wilson TR, Fridlyand J, Yan Y, Penuel E, Burton L, Chan E, Peng J, Lin E, Wang Y, Sosman J, Ribas A, Li J, Moffat J, Sutherlin DP, Koeppen H, Merchant M, Neve R, Settleman J. Widespread potential for growth-factor-driven resistance to anticancer kinase inhibitors. Nature2012; 487(7408): 505-509
CrossRef
Pubmed
Google scholar
|
[19] |
Turke AB, Zejnullahu K, Wu YL, Song Y, Dias-Santagata D, Lifshits E, Toschi L, Rogers A, Mok T, Sequist L, Lindeman NI, Murphy C, Akhavanfard S, Yeap BY, Xiao Y, Capelletti M, Iafrate AJ, Lee C, Christensen JG, Engelman JA, Jänne PA. Preexistence and clonal selection of MET amplification in EGFR mutant NSCLC. Cancer Cell2010; 17(1): 77-88
CrossRef
Pubmed
Google scholar
|
[20] |
Wagner JP, Wolf-Yadlin A, Sevecka M, Grenier JK, Root DE, Lauffenburger DA, MacBeath G. Receptor tyrosine kinases fall into distinct classes based on their inferred signaling networks. Sci Signal2013; 6(284): ra58
CrossRef
Pubmed
Google scholar
|
[21] |
Sharma SV, Lee DY, Li B, Quinlan MP, Takahashi F, Maheswaran S, McDermott U, Azizian N, Zou L, Fischbach MA, Wong KK, Brandstetter K, Wittner B, Ramaswamy S, Classon M, Settleman J. A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell2010; 141(1): 69-80
CrossRef
Pubmed
Google scholar
|
[22] |
Grueneberg DA, Degot S, Pearlberg J, Li W, Davies JE, Baldwin A, Endege W, Doench J, Sawyer J, Hu Y, Boyce F, Xian J, Munger K, Harlow E. Kinase requirements in human cells: I. Comparing kinase requirements across various cell types. Proc Natl Acad Sci USA2008; 105(43): 16472-16477
CrossRef
Pubmed
Google scholar
|
[23] |
Faber AC, Li D, Song Y, Liang MC, Yeap BY, Bronson RT, Lifshits E, Chen Z, Maira SM, García-Echeverría C, Wong KK, Engelman JA. Differential induction of apoptosis in HER2 and EGFR addicted cancers following PI3K inhibition. Proc Natl Acad Sci USA2009; 106(46): 19503-19508
CrossRef
Pubmed
Google scholar
|
[24] |
Prahallad A, Sun C, Huang S, Di Nicolantonio F, Salazar R, Zecchin D, Beijersbergen RL, Bardelli A, Bernards R. Unresponsiveness of colon cancer to BRAF(V600E) inhibition through feedback activation of EGFR. Nature2012; 483(7387): 100-103
CrossRef
Pubmed
Google scholar
|
[25] |
Wang Q, Quan H, Zhao J, Xie C, Wang L, Lou L. RON confers lapatinib resistance in HER2-positive breast cancer cells. Cancer Lett2013; 340(1): 43-50
CrossRef
Pubmed
Google scholar
|
[26] |
Engelman JA, Zejnullahu K, Gale CM, Lifshits E, Gonzales AJ, Shimamura T, Zhao F, Vincent PW, Naumov GN, Bradner JE, Althaus IW, Gandhi L, Shapiro GI, Nelson JM, Heymach JV, Meyerson M, Wong KK, Jänne PA. PF00299804, an irreversible pan-ERBB inhibitor, is effective in lung cancer models with EGFR and ERBB2 mutations that are resistant to gefitinib. Cancer Res2007; 67(24): 11924-11932
CrossRef
Pubmed
Google scholar
|
[27] |
Alexander PB, Yuan L, Yang P, Sun T, Chen R, Xiang H, Chen J, Wu H, Radiloff DR, Wang XF. EGF promotes mammalian cell growth by suppressing cellular senescence. Cell Res2015; 25(1): 135-138
Pubmed
|
[28] |
Lee HJ, Schaefer G, Heffron TP, Shao L, Ye X, Sideris S, Malek S, Chan E, Merchant M, La H, Ubhayakar S, Yauch RL, Pirazzoli V, Politi K, Settleman J. Noncovalent wild-type-sparing inhibitors of EGFR T790M. Cancer Discov2013; 3(2): 168-181
CrossRef
Pubmed
Google scholar
|
[29] |
Kummar S, Chen HX, Wright J, Holbeck S, Millin MD, Tomaszewski J, Zweibel J, Collins J, Doroshow JH. Utilizing targeted cancer therapeutic agents in combination: novel approaches and urgent requirements. Nat Rev Drug Discov2010; 9(11): 843-856
CrossRef
Pubmed
Google scholar
|
[30] |
Crystal AS, Shaw AT, Sequist LV, Friboulet L, Niederst MJ, Lockerman EL, Frias RL, Gainor JF, Amzallag A, Greninger P, Lee D, Kalsy A, Gomez-Caraballo M, Elamine L, Howe E, Hur W, Lifshits E, Robinson HE, Katayama R, Faber AC, Awad MM, Ramaswamy S, Mino-Kenudson M, Iafrate AJ, Benes CH, Engelman JA. Patient-derived models of acquired resistance can identify effective drug combinations for cancer. Science2014; 346(6216): 1480-1486
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |