Implantation of human umbilical cord mesenchymal stem cells for ischemic stroke: perspectives and challenges

Yingchen Li, Guoheng Hu, Qilai Cheng

PDF(338 KB)
PDF(338 KB)
Front. Med. ›› 2015, Vol. 9 ›› Issue (1) : 20-29. DOI: 10.1007/s11684-014-0371-x
REVIEW
REVIEW

Implantation of human umbilical cord mesenchymal stem cells for ischemic stroke: perspectives and challenges

Author information +
History +

Abstract

Ischemic stroke is a focal cerebral insult that often leads to many adverse neurological complications severely affecting the quality of life. The prevalence of stroke is increasing throughout the world, while the efficacy of current pharmacological therapies remains unclear. As a neuroregenerative therapy, the implantation of human umbilical cord mesenchymal stem cells (hUC-MSCs) has shown great possibility to restore function after stroke. This review article provides an update role of hUC-MSCs implantation in the treatment of ischemic stroke. With the unique “immunosuppressive and immunoprivilege” property, hUC-MSCs are advised to be an important candidate for allogeneic cell treatment. Nevertheless, most of the treatments are still at primary stage and not clinically feasible at the current time. Several uncertain problems, such as culture conditions, allograft rejection, and potential tumorigenicity, are the choke points in this cellular therapy. More preclinical researches and clinical studies are needed before hUC-MSCs implantation can be used as a routinely applied clinical therapy.

Keywords

human umbilical cord / mesenchymal stem cells / ischemic stroke / cellular therapy / transplantation

Cite this article

Download citation ▾
Yingchen Li, Guoheng Hu, Qilai Cheng. Implantation of human umbilical cord mesenchymal stem cells for ischemic stroke: perspectives and challenges. Front. Med., 2015, 9(1): 20‒29 https://doi.org/10.1007/s11684-014-0371-x

References

[1]
Zhang L, Li Y, Zhang C, Chopp M, Gosiewska A, Hong K. Delayed administration of human umbilical tissue-derived cells improved neurological functional recovery in a rodent model of focal ischemia. Stroke2011; 42(5): 1437–1444
CrossRef Pubmed Google scholar
[2]
McGuckin CP, Jurga M, Miller AM, Sarnowska A, Wiedner M, Boyle NT, Lynch MA, Jablonska A, Drela K, Lukomska B, Domanska-Janik K, Kenner L, Moriggl R, Degoul O, Perruisseau-Carrier C, Forraz N. Ischemic brain injury: a consortium analysis of key factors involved in mesenchymal stem cell-mediated inflammatory reduction. Arch Biochem Biophys2013; 534(1–2): 88–97
CrossRef Pubmed Google scholar
[3]
Blum B, Benvenisty N. The tumorigenicity of human embryonic stem cells. Adv Cancer Res2008; 100: 133–158
CrossRef Pubmed Google scholar
[4]
Cai J, Li W, Su H, Qin D, Yang J, Zhu F, Xu J, He W, Guo X, Labuda K, Peterbauer A, Wolbank S, Zhong M, Li Z, Wu W, So KF, Redl H, Zeng L, Esteban MA, Pei D. Generation of human induced pluripotent stem cells from umbilical cord matrix and amniotic membrane mesenchymal cells. J Biol Chem2010; 285(15): 11227–11234
CrossRef Pubmed Google scholar
[5]
Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell2006; 126(4): 663–676
CrossRef Pubmed Google scholar
[6]
Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. Multilineage potential of adult human mesenchymal stem cells. Science1999; 284(5411): 143–147
CrossRef Pubmed Google scholar
[7]
Li C, Li B, Dong Z, Gao L, He X, Liao L, Hu C, Wang Q, Jin Y. Lipopolysaccharide differentially affects the osteogenic differentiation of periodontal ligament stem cells and bone marrow mesenchymal stem cells through Toll-like receptor 4 mediated nuclear factor κB pathway. Stem Cell Res Ther2014; 5(3): 67
CrossRef Pubmed Google scholar
[8]
Li D, Wang C, Shan W. Human amnion tissue injected with human umbilical cord mesenchymal stem cells repairs damaged sciatic nerves in rats. Neural Regen Res2012; 7(23): 1771–1778
[9]
Sarugaser R, Lickorish D, Baksh D, Hosseini MM, Davies JE. Human umbilical cord perivascular (HUCPV) cells: a source of mesenchymal progenitors. Stem Cells2005; 23(2): 220–229
CrossRef Pubmed Google scholar
[10]
Guo J, Fan HH, Qian YX. IFN-γ can promote the immunosuppressive capacity of human umbilical cord mesenchymal stem cells by expression of indoleamine 2,3-dioxygenase. J Diagn Concepts Pract2010; 9(3): 181–185
[11]
Li DR, Cai JH. Methods of isolation, expansion, differentiating induction and preservation of human umbilical cord mesenchymal stem cells. Chin Med J (Engl)2012; 125(24): 4504–4510
Pubmed
[12]
Kadam SS, Tiwari S, Bhonde RR. Simultaneous isolation of vascular endothelial cells and mesenchymal stem cells from the human umbilical cord. In Vitro Cell Dev Biol Anim2009; 45(1–2): 23–27
CrossRef Pubmed Google scholar
[13]
Dong M, Chen J, Ma YQ. Efficient method for isolation of human umbilical cord mesenchymal stem cells. Chin J Tissue Eng Res (Zhongguo Zu Zhi Gong Cheng Yan Jiu)2012; 16(45): 8406–8412 (in Chinese)
[14]
Liu SP, Ding DC, Wang HJ, Su CY, Lin SZ, Li H, Shyu WC. Nonsenescent Hsp27-upregulated MSCs implantation promotes neuroplasticity in stroke model. Cell Transplant2010; 19(10): 1261–1279
CrossRef Pubmed Google scholar
[15]
Sensebé L, Krampera M, Schrezenmeier H, Bourin P, Giordano R. Mesenchymal stem cells for clinical application. Vox Sang2010; 98(2): 93–107
CrossRef Pubmed Google scholar
[16]
Li JJ, Li D, Ju XL, Liu WB. Umbilical cord-derived mesenchymal stem cells retain immunomodulatory and anti-oxidative activities after neural induction. Neural Regen Res2012; 7(34): 2663–2672
[17]
Arufe MC, De la Fuente A, Fuentes I, Toro FJ, Blanco FJ.Umbilical cord as a mesenchymal stem cell source for treating joint pathologies. World J Orthop2011; 2(6): 43–50
CrossRef Google scholar
[18]
Liu L, Zhao X, Li P, Zhao G, Wang Y, Hu Y, Hou Y. A novel way to isolate MSCs from umbilical cords. Eur J Immunol2012; 42(8): 2190–2193
CrossRef Pubmed Google scholar
[19]
Malgieri A, Kantzari E, Patrizi MP, Gambardella S. Bone marrow and umbilical cord blood human mesenchymal stem cells: state of the art. Int J Clin Exp Med2010; 3(4): 248–269
Pubmed
[20]
Xu LX, Cao YB, Liu ZY, Wu YM, Wang ZH, Yan B, Da WM, Wu XX. Transplantation of haploidentical-hematopoietic stem cells combined with two kind of third part cells for chronic aplastic anemia: one case report. J Exp Hematol (Zhongguo Shi Yan Xue Ye Xue Za Zhi)2013; 21(6): 1522–1525 (in Chinese)
Pubmed
[21]
Gu W, Gu J. Homing mechanism of umbilical cord mesenchymal stem cells. Chin J Tissue Eng Res (Zhongguo Zu Zhi Gong Cheng Yan Jiu)2013; 17(6): 1135–1140 (in Chinese)
[22]
Li DR, Cai JH. Methods of isolation, expansion, differentiating induction and preservation of human umbilical cord mesenchymal stem cells. Chin Med J (Engl)2012; 125(24): 4504–4510
Pubmed
[23]
Hass R, Kasper C, Böhm S, Jacobs R. Different populations and sources of human mesenchymal stem cells (MSC): a comparison of adult and neonatal tissue-derived MSC. Cell Commun Signal2011; 9(1): 12
CrossRef Pubmed Google scholar
[24]
Guo J, Yang J, Cao G, Fan H, Guo C, Ma YE, Qian Y, Chen L, Li X, Chang C. Xenogeneic immunosuppression of human umbilical cord mesenchymal stem cells in a major histocompatibility complex-mismatched allogeneic acute graft-versus-host disease murine model. Eur J Haematol2011; 87(3): 235–243
CrossRef Pubmed Google scholar
[25]
Wang D, Chen K, Du WT, Han ZB, Ren H, Chi Y, Yang SG, Bayard F, Zhu D, Han ZC. CD14+ monocytes promote the immunosuppressive effect of humanumbilical cord matrix stem cells. Exp Cell Res2010; 316(15): 2414–2423
CrossRef Pubmed Google scholar
[26]
Das M, Sundell IB, Koka PS. Adult mesenchymal stem cells and their potency in the cell-based therapy. J Stem Cells2013; 8(1): 1–16
Pubmed
[27]
Atoui R, Shum-Tim D, Chiu RC. Myocardial regenerative therapy: immunologic basis for the potential “universal donor cells”. Ann Thorac Surg2008; 86(1): 327–334
CrossRef Pubmed Google scholar
[28]
Patel DM, Shah J, Srivastava AS. Therapeutic potential of mesenchymal stem cells in regenerative medicine. Stem Cells Int2013; 2013: 496218
CrossRef Pubmed Google scholar
[29]
Liu GY, Xu Y, Li Y, Wang LH, Liu YJ, Zhu D. Secreted galectin-3 as a possible biomarker for the immunomodulatory potential of human umbilical cord mesenchymal stromal cells. Cytotherapy2013; 15(10): 1208–1217
CrossRef Pubmed Google scholar
[30]
Wang D, Ji YR, Chen K, Du WT, Yang ZX, Han ZB, Chi Y, Liang L, Bayard F, Han ZC. IL-6 production stimulated by CD14(+) monocytes-paracrined IL-1β does not contribute to the immunosuppressive activity of human umbilical cord mesenchymal stem cells. Cell Physiol Biochem2012; 29(3–4): 551–560
CrossRef Pubmed Google scholar
[31]
Wu CC, Wu TC, Liu FL, Sytwu HK, Chang DM. TNF-α inhibitor reverse the effects of human umbilical cord-derived stem cells on experimental arthritis by increasing immunosuppression. Cell Immunol2012; 273(1): 30–40
CrossRef Pubmed Google scholar
[32]
Liu GY, Xu Y, Li Y, Wang LH, Liu YJ, Zhu D. Secreted galectin-3 as a possible biomarker for the immunomodulatory potential of human umbilical cord mesenchymal stromal cells. Cytotherapy2013; 15(10): 1208–1217
CrossRef Pubmed Google scholar
[33]
Greco SJ, Rameshwar P. Mesenchymal stem cells in drug/gene delivery: implications for cell therapy. Ther Deliv2012; 3(8): 997–1004
CrossRef Pubmed Google scholar
[34]
Fong CY, Chak LL, Biswas A, Tan JH, Gauthaman K, Chan WK, Bongso A. Human Wharton’s jelly stem cells have unique transcriptome profiles compared to human embryonic stem cells and other mesenchymal stem cells. Stem Cell Rev2011; 7(1): 1–16
CrossRef Pubmed Google scholar
[35]
Liu X, Ye R, Yan T, Yu SP, Wei L, Xu G, Fan X, Jiang Y, Stetler RA, Liu G, Chen J. Cell based therapies for ischemic stroke: from basic science to bedside. Prog Neurobiol2014; 115: 92–115
CrossRef Pubmed Google scholar
[36]
Liao W, Xie J, Zhong J, Liu Y, Du L, Zhou B, Xu J, Liu P, Yang S, Wang J, Han Z, Han ZC. Therapeutic effect of human umbilical cord multipotent mesenchymal stromal cells in a rat model of stroke. Transplantation2009; 87(3): 350–359
CrossRef Pubmed Google scholar
[37]
Lin YC, Ko TL, Shih YH, Lin MY, Fu TW, Hsiao HS, Hsu JY, Fu YS. Human umbilical mesenchymal stem cells promote recovery after ischemic stroke. Stroke2011; 42(7): 2045–2053
CrossRef Pubmed Google scholar
[38]
Weise G, Lorenz M, Pösel C, Maria Riegelsberger U, Störbeck V, Kamprad M, Kranz A, Wagner DC, Boltze J. Transplantation of cryopreserved human umbilical cord blood mononuclear cells does not induce sustained recovery after experimental stroke in spontaneously hypertensive rats. J Cereb Blood Flow Metab2014; 34(1): e1–e9
CrossRef Pubmed Google scholar
[39]
Pellegrini L, Bennis Y, Guillet B, Velly L, Bruder N, Pisano P. Cell therapy for stroke: from myth to reality. Rev Neurol (Paris)2013; 169(4): 291–306 (in French)
CrossRef Pubmed Google scholar
[40]
Lindvall O, Kokaia Z. Stem cell research in stroke: how far from the clinic? Stroke2011; 42(8): 2369–2375
CrossRef Pubmed Google scholar
[41]
Xia G, Hong X, Chen X, Lan F, Zhang G, Liao L. Intracerebral transplantation of mesenchymal stem cells derived from human umbilical cord blood alleviates hypoxic ischemic brain injury in rat neonates. J Perinat Med2010; 38(2): 215–221
CrossRef Pubmed Google scholar
[42]
Messerli M, Wagner A, Sager R, Mueller M, Baumann M, Surbek DV, Schoeberlein A. Stem cells from umbilical cord Wharton’s jelly from preterm birth have neuroglial differentiation potential. Reprod Sci2013; 20(12): 1455–1464
[43]
Yan M, Sun M, Zhou Y, Wang W, He Z, Tang D, Lu S, Wang X, Li S, Wang W, Li H. Conversion of human umbilical cord mesenchymal stem cells in Wharton’s jelly to dopamine neurons mediated by the Lmx1a and neurturin in vitro: potential therapeutic application for Parkinson’s disease in a rhesus monkey model. PLoS ONE2013; 8(5): e64000
CrossRef Pubmed Google scholar
[44]
Lees JS, Sena ES, Egan KJ, Antonic A, Koblar SA, Howells DW, Macleod MR. Stem cell-based therapy for experimental stroke: a systematic review and meta-analysis. Int J Stroke2012; 7(7): 582–588
CrossRef Pubmed Google scholar
[45]
Weiss ML, Medicetty S, Bledsoe AR, Rachakatla RS, Choi M, Merchav S, Luo Y, Rao MS, Velagaleti G, Troyer D. Human umbilical cord matrix stem cells: preliminary characterization and effect of transplantation in a rodent model of Parkinson’s disease. Stem Cells2006; 24(3): 781–792
CrossRef Pubmed Google scholar
[46]
Liu XS, Chopp M, Wang XL, Zhang L, Hozeska-Solgot A, Tang T, Kassis H, Zhang RL, Chen C, Xu J, Zhang ZG. MicroRNA-17-92 cluster mediates the proliferation and survival of neural progenitor cells after stroke. J Biol Chem2013; 288(18): 12478–12488
CrossRef Pubmed Google scholar
[47]
Tornero D, Wattananit S, Grønning Madsen M, Koch P, Wood J, Tatarishvili J, Mine Y, Ge R, Monni E, Devaraju K, Hevner RF, Brüstle O, Lindvall O, Kokaia Z. Human induced pluripotent stem cell-derived cortical neurons integrate in stroke-injured cortex and improve functional recovery. Brain2013; 136(12): 3561–3577
CrossRef Pubmed Google scholar
[48]
Martí-Fàbregas J, Romaguera-Ros M, Gómez-Pinedo U, Martínez-Ramírez S, Jiménez-Xarrié E, Marín R, Martí-Vilalta JL, García-Verdugo JM. Proliferation in the human ipsilateral subventricular zone after ischemic stroke. Neurology2010; 74(5): 357–365
CrossRef Pubmed Google scholar
[49]
Jin K, Wang X, Xie L, Mao XO, Greenberg DA. Transgenic ablation of doublecortin-expressing cells suppresses adult neurogenesis and worsens stroke outcome in mice. Proc Natl Acad Sci USA2010; 107(17): 7993–7998
CrossRef Pubmed Google scholar
[50]
Raber J, Fan Y, Matsumori Y, Liu Z, Weinstein PR, Fike JR, Liu J. Irradiation attenuates neurogenesis and exacerbates ischemia-induced deficits. Ann Neurol2004; 55(3): 381–389
CrossRef Pubmed Google scholar
[51]
Dibajnia P, Morshead CM. Role of neural precursor cells in promoting repair following stroke. Acta Pharmacol Sin2013; 34(1): 78–90
CrossRef Pubmed Google scholar
[52]
Liu C, Sun J. Potential application of hydrolyzed fish collagen for inducing the multidirectional differentiation of rat bone marrow mesenchymal stem cells. Biomacromolecules2014; 15(1): 436–443
CrossRef Pubmed Google scholar
[53]
Kim SS, Yoo SW, Park TS, Ahn SC, Jeong HS, Kim JW, Chang DY, Cho KG, Kim SU, Huh Y, Lee JE, Lee SY, Lee YD, Suh-Kim H. Neural induction with neurogenin1 increases the therapeutic effects of mesenchymal stem cells in the ischemic brain. Stem Cells2008; 26(9): 2217–2228
CrossRef Pubmed Google scholar
[54]
Seo JH, Cho SR. Neurorestoration induced by mesenchymal stem cells: potential therapeutic mechanisms for clinical trials. Yonsei Med J2012; 53(6): 1059–1067
CrossRef Pubmed Google scholar
[55]
Xu W, Wang X, Xu G, Guo J. Light-induced retinal injury enhanced neurotrophins secretion and neurotrophic effect of mesenchymal stem cells in vitro. Arq Bras Oftalmol2013; 76(2): 105–110
CrossRef Pubmed Google scholar
[56]
Choi M, Lee HS, Naidansaren P, Kim HK, O E, Cha JH, Ahn HY, Yang PI, Shin JC, Joe YA. Proangiogenic features of Wharton’s jelly-derived mesenchymal stromal/stem cells and their ability to form functional vessels. Int J Biochem Cell Biol2013; 45(3): 560–570
CrossRef Pubmed Google scholar
[57]
Alder J, Kramer BC, Hoskin C, Thakker-Varia S. Brain-derived neurotrophic factor produced by human umbilical tissue-derived cells is required for its effect on hippocampal dendritic differentiation. Dev Neurobiol2012; 72(6): 755–765
CrossRef Pubmed Google scholar
[58]
Ribeiro CA, Fraga JS, Grãos M, Neves NM, Reis RL, Gimble JM, Sousa N, Salgado AJ. The secretome of stem cells isolated from the adipose tissue and Wharton jelly acts differently on central nervous system derived cell populations. Stem Cell Res Ther2012; 3(3): 18
CrossRef Pubmed Google scholar
[59]
Qu R, Li Y, Gao Q, Shen L, Zhang J, Liu Z, Chen X, Chopp M. Neurotrophic and growth factor gene expression profiling of mouse bone marrow stromal cells induced by ischemic brain extracts. Neuropathology2007; 27(4): 355–363
CrossRef Pubmed Google scholar
[60]
Verina T, Fatemi A, Johnston MV, Comi AM. Pluripotent possibilities: human umbilical cord blood cell treatment after neonatal brain injury. Pediatr Neurol2013; 48(5): 346–354
CrossRef Pubmed Google scholar
[61]
Liu XL, Zhang W, Tang SJ. Intracranial transplantation of human adipose-derived stem cells promotes the expression of neurotrophic factors and nerve repair in rats of cerebral ischemia-reperfusion injury. Int J Clin Exp Pathol2014; 7(1): 174–183
Pubmed
[62]
Petrova ES. The use of stem cells to stimulate regeneration of damaged nerve. Tsitologiia2012; 54(7): 525–540 (in Russian)
Pubmed
[63]
Liu Z, Huang D, Zhang M, Chen Z, Jin J, Huang S, Zhang Z, Wang Z, Chen L, Chen L, Xu Y. Cocaine- and amphetamine-regulated transcript promotes the differentiation of mouse bone marrow-derived mesenchymal stem cells into neural cells. BMC Neurosci2011; 12: 67
CrossRef Pubmed Google scholar
[64]
Wang LL, Chen D, Lee J, Gu X, Alaaeddine G, Li J, Wei L, Yu SP. Mobilization of endogenous bone marrow derived endothelial progenitor cells and therapeutic potential of parathyroid hormone after ischemic stroke in mice. PLoS ONE2014; 9(2): e87284
CrossRef Pubmed Google scholar
[65]
Liu XL, Zhang W, Tang SJ. Intracranial transplantation of human adipose-derived stem cells promotes the expression of neurotrophic factors and nerve repair in rats of cerebral ischemia-reperfusion injury. Int J Clin Exp Pathol2014; 7(1): 174–183
Pubmed
[66]
Akimoto K, Kimura K, Nagano M, Takano S, To’a Salazar G, Yamashita T, Ohneda O. Umbilical cord blood-derived mesenchymal stem cells inhibit, but adipose tissue-derived mesenchymal stem cells promote, glioblastoma multiforme proliferation. Stem Cells Dev2013; 22(9): 1370–1386
CrossRef Pubmed Google scholar
[67]
Zhai XD, Chen ZY, Leng XF, Wang YJ, Chen Lu, Jiang S. Treat flap ischemia-reperfusion injury by local transplanting human umbilical cord mesenchymal stem cells. Chin J Plast Surg (Zhonghua Zheng Xing Wai Ke Za Zhi)2012; 28(3): 203–207 (in Chinese)
Pubmed
[68]
Kim WR, Sun W. Programmed cell death during postnatal development of the rodent nervous system. Dev Growth Differ2011; 53(2): 225–235
CrossRef Pubmed Google scholar
[69]
Lin WY, Chang YC, Ho CJ, Huang CC. Ischemic preconditioning reduces neurovascular damage after hypoxia-ischemia via the cellular inhibitor of apoptosis 1 in neonatal brain. Stroke2013; 44(1): 162–169
CrossRef Pubmed Google scholar
[70]
Huang W, Mo X, Qin C, Zheng J, Liang Z, Zhang C. Transplantation of differentiated bone marrow stromal cells promotes motor functional recovery in rats with stroke. Neurol Res2013; 35(3): 320–328
CrossRef Pubmed Google scholar
[71]
Scheibe F, Klein O, Klose J, Priller J. Mesenchymal stromal cells rescue cortical neurons from apoptotic cell death in an in vitro model of cerebral ischemia. Cell Mol Neurobiol2012; 32(4): 567–576
CrossRef Pubmed Google scholar
[72]
Scuteri A, Ravasi M, Pasini S, Bossi M, Tredici G. Mesenchymal stem cells support dorsal root ganglion neurons survival by inhibiting the metalloproteinase pathway. Neuroscience2011; 172: 12–19
CrossRef Pubmed Google scholar
[73]
Jin R, Yang G, Li G. Inflammatory mechanisms in ischemic stroke: role of inflammatory cells. J Leukoc Biol2010; 87(5): 779–789
CrossRef Pubmed Google scholar
[74]
Carroll J. Human cord blood for the hypoxic-ischemic neonate. Pediatr Res2012; 71(4 Pt 2): 459–463
CrossRef Pubmed Google scholar
[75]
Womble TA, Green S, Shahaduzzaman M, Grieco J, Sanberg PR, Pennypacker KR, Willing AE. Monocytes are essential for the neuroprotective effect of human cord blood cells following middle cerebral artery occlusion in rat. Mol Cell Neurosci2014; 59: 76–84
CrossRef Pubmed Google scholar
[76]
Bickels J, Weinstein T, Robinson D, Nevo Z. Common skeletal growth retardation disorders resulting from abnormalities within the mesenchymal stem cells reservoirs in the epiphyseal organs pertaining to the long bones. J Pediatr Endocrinol Metab2010; 23(11): 1107–1122
CrossRef Pubmed Google scholar
[77]
Leonardo CC, Hall AA, Collier LA, Ajmo CT Jr, Willing AE, Pennypacker KR. Human umbilical cord blood cell therapy blocks the morphological change and recruitment of CD11b-expressing, isolectin-binding proinflammatory cells after middle cerebral artery occlusion. J Neurosci Res2010; 88(6): 1213–1222
Pubmed
[78]
Seo JH, Jang IK, Kim HB, Yang MS, Lee JE, Kim HE, Eom YW, Lee DH, Yu JH, Kim JY, Kim HO, Cho SR. Immunomodulation from intravenous transplantation of mesenchymal stem cells promotes functional recovery in spinal cord injured rats. Cell Med2011; 2(2): 55–67
CrossRef Google scholar
[79]
Eckert MA, Vu Q, Xie K, Yu J, Liao W, Cramer SC, Zhao W. Evidence for high translational potential of mesenchymal stromal cell therapy to improve recovery from ischemic stroke. J Cereb Blood Flow Metab2013; 33(9): 1322–1334
CrossRef Pubmed Google scholar
[80]
Petrie Aronin CE, Tuan RS. Therapeutic potential of the immunomodulatory activities of adult mesenchymal stem cells. Birth Defects Res C Embryo Today2010; 90(1): 67–74
CrossRef Pubmed Google scholar
[81]
Carroll JE, Mays RW. Update on stem cell therapy for cerebral palsy. Expert Opin Biol Ther2011; 11(4): 463–471
CrossRef Pubmed Google scholar
[82]
Wang D, Wang S, Shi C. Update on cancer related issues of mesenchymal stem cell-based therapies. Curr Stem Cell Res Ther2012; 7(5): 370–380
CrossRef Pubmed Google scholar
[83]
Lua I, James D, Wang J, Wang KS, Asahina K. Mesodermal mesenchymal cells give rise to myofibroblasts, but not epithelial cells, in mouse liver injury. Hepatology2014; 60(1): 311–322
CrossRef Pubmed Google scholar
[84]
Lin JT, Wang JY, Chen MK, Chen HC, Chang TH, Su BW, Chang PJ. Colon cancer mesenchymal stem cells modulate the tumorigenicity of colon cancer through interleukin 6. Exp Cell Res2013; 319(14): 2216–2229
CrossRef Pubmed Google scholar
[85]
Rameshwar P. Would cancer stem cells affect the future investment in stem cell therapy. World J Exp Med2012; 2(2): 26–29
CrossRef Pubmed Google scholar
[86]
Lin G, Yang R, Banie L, Wang G, Ning H, Li LC, Lue TF, Lin CS. Effects of transplantation of adipose tissue-derived stem cells on prostate tumor. Prostate2010; 70(10): 1066–1073
CrossRef Pubmed Google scholar
[87]
Honmou O, Houkin K, Matsunaga T, Niitsu Y, Ishiai S, Onodera R, Waxman SG, Kocsis JD. Intravenous administration of auto serum-expanded autologous mesenchymal stem cells in stroke. Brain2011; 134(6): 1790–1807
CrossRef Pubmed Google scholar
[88]
Lee JS, Hong JM, Moon GJ, Lee PH, Ahn YH, Bang OY; STARTING collaborators. A long-term follow-up study of intravenous autologous mesenchymal stem cell transplantation in patients with ischemic stroke. Stem Cells2010; 28(6): 1099–1106
CrossRef Pubmed Google scholar
[89]
Chen GH, Yang T, Tian H, Qiao M, Liu HW, Fu CC, Miao M, Jin ZM, Tang XW, Han Y, He GS, Zhang XH, Ma X, Chen F, Hu XH, Xue SL, Wang Y, Qiu HY, Sun AN, Chen ZZ, Wu DP. Clinical study of umbilical cord-derived mesenchymal stem cells for treatment of nineteen patients with steroid-resistant severe acute graft-versus-host disease. Chin J Hematol (Zhonghua Xue Ye Xue Za Zhi)2012; 33(4): 303–306 (in Chinese)
Pubmed

Acknowledgements

This study was supported by National Natural Science Foundation of China (No. 81273751), the Project for Key Laboratories in Hunan Province — the Prophylaxis and Treatment for Nervous System Diseases with Combination of TCM and Western Medicine (No. 2014XNFZ01) and the Innovative Scientific Research Projects of Graduate Students in Hunan Province in 2014 (No. CX2014B348).
Yingchen Li, Guoheng Hu, and Qilai Cheng have declared that no conflict of interest exists, and the authors have no financial relationships to disclose. This manuscript is a review article and does not involve a research protocol requiring approval by the relevant institutional review board or ethics committee.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(338 KB)

Accesses

Citations

Detail

Sections
Recommended

/