Development and clinical trial of a novel bioactive bone cement

LEONG John1, LI Zhaoyang2, LU William2

PDF(467 KB)
PDF(467 KB)
Front. Med. ›› 2008, Vol. 2 ›› Issue (2) : 117-126. DOI: 10.1007/s11684-008-0022-1

Development and clinical trial of a novel bioactive bone cement

  • LEONG John1, LI Zhaoyang2, LU William2
Author information +
History +

Abstract

Strontium (Sr) and related compounds have become more attractive in the prevention and treatment of osteoporosis. Previously, we developed a novel bioactive bone cement which is mainly composed of strontium-containing hydroxyapatite (Sr-HA) filler and bisphenol A diglycidylether dimethacrylate (Bis-GMA) resin. This bone cement is superior to conventional polymethylmethacrylate (PMMA) bone cement in bioactivity, biocompatibility, and osseointegration. It also has shown sufficient mechanical strength properties for its use in percutaneous vertebroplasty (PVP) and total hip replacement (THR). In this paper, we review the in vitro, in vivo and clinical evidence for the effectiveness of this bioactive bone cement.

Cite this article

Download citation ▾
LEONG John, LI Zhaoyang, LU William. Development and clinical trial of a novel bioactive bone cement. Front. Med., 2008, 2(2): 117‒126 https://doi.org/10.1007/s11684-008-0022-1

References

1. Harrigan T P Kareh J A O'Connor D O Burke D W Harris W H A finite element study of the initiationof failure of fixation in cemented femoral total hip componentsJ Orthop Res 1992 10(1)134144. doi:10.1002/jor.1100100116
2. Wang J S Franzen H Toksvig-Larsen S Lidgren L Does vacuum mixingof bone cement affect heat generation? Analysis of four cement brandsJ Appl Biomater 1995 6(2)105108. doi:10.1002/jab.770060204
3. Jasty M Maloney W J Bragdon C R O'Connor D O Haire T Harris W H Theinitiation of failure in cemented femoral components of hip arthroplastiesJ Bone Joint Surg Br 1991 73(4)551558
4. Leeson M C Lippitt S B Thermal aspects of the useof polymethylmethacrylate in large metaphyseal defects in bone. Aclinical review and laboratory studyClinOrthop Relat Res 1993 (295)239245
5. Hennig W Blencke B A Bromer H Deutscher K K Gross A Ege W Investigations with bioactivated polymethylmethacrylatesJ Biomed Mater Res 1979 13(1)8999. doi:10.1002/jbm.820130110
6. Shinzato S Nakamura T Kokubo T Kitamura Y PMMA-based bioactivecement: effect of glass bead filler content and histological changewith timeJ Biomed Mater Res 2002 59(2)225232. doi:10.1002/jbm.1236
7. Kamimura M Tamura J Shinzato S Kawanabe K Neo M Kokubo T Nakamura T Interfacial tensile strength between polymethylmethacrylate-basedbioactive bone cements and boneJ BiomedMater Res 2002 61(4)564571. doi:10.1002/jbm.10214
8. Shinzato S Nakamura T Ando K Kokubo T Kitamura Y Mechanical properties and osteoconductivityof new bioactive composites consisting of partially crystallized glassbeads and poly(methyl methacrylate)J BiomedMater Res 2002 60(4)556563. doi:10.1002/jbm.10098
9. Morejon L Mendizabal A E Garcia-Menocal J A Ginebra M P Aparicio C Mur F J Marsal M Davidenko N Ballesteros M E Planell J A Static mechanical propertiesof hydroxyapatite (HA) powder-filled acrylic bone cements: effectof type of HA powderJ Biomed Mater ResB Appl Biomater 2005 72(2)345352
10. Erbe E M Clineff T D Gualtieri G Comparison of a new bisphenol-a-glycidyl dimethacrylate-basedcortical bone void filler with polymethyl methacrylateEur Spine J 2001 10(Suppl 2)S147S152. doi:10.1007/s005860100288
11. DiCicco M Compton R Jansen-Varnum S A In vitro evaluation of orthopedic compositecytotoxicity: assessing the potential for postsurgical productionof hydroxyl radicalsJ Biomed Mater ResB Appl Biomater 2005 72(1)146155. doi:10.1002/jbm.b.30127
12. Lee J H Um C M Lee I B Rheological properties of resin composites according tovariations in monomer and filler compositionDent Mater 2006 22(6)515526. doi:10.1016/j.dental.2005.05.008
13. Zandinejad A A Atai M Pahlevan A The effect of ceramic and porous fillers on the mechanicalproperties of experimental dental compositesDent Mater 2006 22(4)382387. doi:10.1016/j.dental.2005.04.027
14. Li Y W Leong J C Y Lu W W Luk K D K Cheung K M C Chiu K Y Chow S P A novel injectable bioactivebone cement for spinal surgery: a developmental and preclinical studyJ Biomed Mater Res 2000 52(1)164170. doi:10.1002/1097‐4636(200010)52:1<164::AID‐JBM21>3.0.CO;2‐R
15. Lu W W Cheung K M C Li Y W Luk K D K Holmes A D Zhu Q A Leong J C Y Bioactive bone cement as aprincipal fixture for spinal burst fracture: an in vitro biomechanicaland morphologic studySpine 2001 26(24)26842690discussion 2690–2691. doi: 10.1097/00007632‐200112150‐00010
16. Christoffersen J Christoffersen M R Kolthoff N Barenholdt O Effectsof strontium ions on growth and dissolution of hydroxyapatite andon bone mineral detectionBone 1997 20(1)4754. doi:10.1016/S8756‐3282(96)00316‐X
17. Dahl S G Allain P Marie P J Mauras Y Boivin G Ammann P Tsouderos Y Delmas P D Christiansen C Incorporationand distribution of strontium in boneBone 2001 28(4)446453. doi:10.1016/S8756‐3282(01)00419‐7
18. Meunier P J Roux C Seeman E Ortolani S Badurski J E Spector T D Cannata J Balogh A Lemmel E M Pors-Nielsen S Rizzoli R Genant H K Reginster J Y The effects of strontium ranelateon the risk of vertebral fracture in women with postmenopausal osteoporosisN Engl J Med 2004 350(5)459468. doi:10.1056/NEJMoa022436
19. Farlay D Boivin G Panczer G Lalande A Meunier P J Long-term strontium ranelate administrationin monkeys preserves characteristics of bone mineral crystals anddegree of mineralization of boneJ BoneMiner Res 2005 20(9)15691578. doi:10.1359/JBMR.050405
20. Ni G X Lu W W Chiu K Y Li Z Y Fong D Y Luk K D K Strontium-containing hydroxyapatite (Sr-HA) bioactive cement forprimary hip replacement: an in vivo studyJ Biomed Mater Res B Appl Biomater 2006 77(2)409415
21. Ni G X Choy Y S Lu W W Ngan A H Chiu K Y Li Z Y Tang B Luk K D K Nano-mechanics of bone and bioactive bone cement interfacesin a load-bearing modelBiomaterials 2006 27(9)19631970. doi:10.1016/j.biomaterials.2005.09.044
22. Cheung K M C Lu W W Luk K D K Wong C T Chan D Shen J X Qiu G X Zheng Z M Li C H Liu S L Chan W K Leong J C Y Vertebroplasty by use of astrontium-containing bioactive bone cementSpine 2005 30(17 Suppl)S84S91. doi:10.1097/01.brs.0000175183.57733.e5
23. Wong C T Lu W W Chan W K Cheung K M C Luk K D K Lu D S Rabie A B Deng L F Leong J C Y In vivo cancellousbone remodeling on a strontium-containing hydroxyapatite (sr-HA) bioactivecementJ Biomed Mater Res A 2004 68(3)513521. doi:10.1002/jbm.a.20089
24. Wong C T Chen Q Z Lu W W Leong J C Y Chan W K Cheung K M C Luk K D K Ultrastructural study of mineralizationof a strontium-containing hydroxyapatite (Sr-HA) cement in vivoJ Biomed Mater Res A 2004 70(3)428435. doi:10.1002/jbm.a.30097
25. Mousa W F Kobayashi M Kitamura Y Zeineldin I A Nakamura T Effect of silane treatmentand different resin compositions on biological properties of bioactivebone cement containing apatite-wollastonite glass ceramic powderJ Biomed Mater Res 1999 47(3)336344. doi:10.1002/(SICI)1097‐4636(19991205)47:3<336::AID‐JBM7>3.0.CO;2‐O
26. Roether J A Deb S The effect of surface treatmentof hydroxyapatite on the properties of a bioactive bone cementJ Mater Sci Mater Med 2004 15(4)413418. doi:10.1023/B:JMSM.0000021112.51065.40
27. Zhao F Lu W W Luk K D K Cheung K M C Wong C T Leong J C Y Yao K D Surface treatment of injectablestrontium-containing bioactive bone cement for vertebroplastyJ Biomed Mater Res B Appl Biomater 2004 69(1)7986. doi:10.1002/jbm.b.20041
28. Dupraz A M de Wijn J R v d Meer S A de Groot K Characterizationof silane-treated hydroxyapatite powders for use as filler in biodegradablecompositesJ Biomed Mater Res 1996 30(2)231238. doi:10.1002/(SICI)1097‐4636(199602)30:2<231::AID‐JBM13>3.0.CO;2‐P
29. Belkoff S M Mathis J M Jasper L E Deramond H The biomechanicsof vertebroplasty. The effect of cement volume on mechanical behaviorSpine 2001 26(14)15371541. doi:10.1097/00007632‐200107150‐00007
30. Nancollas G H Tang R Phipps R J Henneman Z Gulde S Wu W Mangood A Russell R G Ebetino F H Novel insightsinto actions of bisphosphonates on bone: differences in interactionswith hydroxyapatiteBone 2006 38(5)617627. doi:10.1016/j.bone.2005.05.003
31. Watts N B Bisphosphonatetreatment of osteoporosisClin Geriatr Med 2003 19(2)395414. doi:10.1016/S0749‐0690(02)00069‐1
32. Li Z Y Yang C Lu W W Xu B Lam W M Ni G X Abbah S A Yang F Cheung K M C Luk K D K Characteristics and mechanical propertiesof acrylolpamidronate-treated strontium containing bioactive bonecementJ Biomed Mater Res B Appl Biomater 2007 83(2)464471
33. Liu Q de Wijn J R de Groot K van Blitterswijk C A Surfacemodification of nano-apatite by grafting organic polymerBiomaterials 1998 19(11–12)10671072. doi:10.1016/S0142‐9612(98)00033‐7
34. Furuzono T Sonoda K Tanaka J A hydroxyapatite coating covalently linked onto a siliconeimplant materialJ Biomed Mater Res 2001 56(1)916. doi:10.1002/1097‐4636(200107)56:1<9::AID‐JBM1073>3.0.CO;2‐2
35. Wang L Zhang M Yang Z Xu B The first pamidronatecontaining polymer and copolymer.Chem Commun(Camb). 2006 (26)27952797
36. Heymann D Ory B Gouin F Green J R Redini F Bisphosphonates: new therapeutic agentsfor the treatment of bone tumorsTrendsMol Med 2004 10(7)337343. doi:10.1016/j.molmed.2004.05.007
37. Mekraldi S Toromanoff A Rizzoli R Ammann P Pamidronate preventsbone loss and decreased bone strength in adult female and male ratsfed an isocaloric low-protein dietJ BoneMiner Res 2005 20(8)13651371. doi:10.1359/JBMR.050321
38. Islas-Blancas M E Cervantes J M Vargas-Coronado R Cauich-Rodriguez J V Vera-Graziano R Martinez-Richa A Characterization of bone cements prepared with functionalizedmethacrylates and hydroxyapatiteJ BiomaterSci Polym Ed 2001 12(8)893910. doi:10.1163/156856201753113088
39. Jasty M Maloney W J Bragdon C R Haire T Harris W H Histomorphological studies of the long-termskeletal responses to well fixed cemented femoral componentsJ Bone Joint Surg Am 1990 72(8)12201229
40. Mohler C G Callaghan J J Collis D K Johnston R C Early looseningof the femoral component at the cement-prosthesis interface aftertotal hip replacementJ Bone Joint SurgAm 1995 77(9)13151322
41. Verdonschot N Huiskes R Mechanical effects of stemcement interface characteristics in total hip replacementClin Orthop Relat Res 1996 (329)326336
42. Coe M R Fechner R E Jeffrey J J Balian G Whitehill R Characterization of tissue from the bone-polymethylmethacrylateinterface in a rat experimental model. Demonstration of collagen-degradingactivity and bone-resorbing potentialJBone Joint Surg Am 1989 71(6)863874
43. Nercessian O A Martin G Joshi R P Su B W Eftekhar N S A 15- to 25- year follow-up study of primaryCharnley low-friction arthroplasty: a single surgeon seriesJ Arthroplasty 2005 20(2)162167. doi:10.1016/j.arth.2004.07.006
44. Berry D J Harmsen W S Cabanela M E Morrey B F Twenty-five-yearsurvivorship of two thousand consecutive primary Charnley total hipreplacements: factors affecting survivorship of acetabular and femoralcomponentsJ Bone Joint Surg Am 2002 84-A(2)171177
45. Callaghan J J Templeton J E Liu S S Pedersen D R Goetz D D Sullivan P M Johnston R C Results of Charnley total hiparthroplasty at a minimum of thirty years. A concise follow-up ofa previous reportJ Bone Joint Surg Am 2004 86-A(4)690695
46. Hartofilakidis G Karachalios T Karachalios G The 20-year outcome of the charnley arthroplasty in youngerand older patientsClin Orthop Relat Res 2005 (434)177182. doi:10.1097/01.blo.0000155012.23703.54
47. Dohmae Y Bechtold J E Sherman R E Puno R M Gustilo R B Reduction in cement-bone interface shearstrength between primary and revision arthroplastyClin Orthop Relat Res 1988 (236)214220
48. Anthony P P Gie G A Howie C R Ling R S Localised endostealbone lysis in relation to the femoral components of cemented totalhip arthroplastiesJ Bone Joint Surg Br 1990 72(6)971979
49. Ni G X Chiu K Y Lu W W Wang Y Zhang Y G Hao L B Li Z Y Lam W M Lu S B Luk K D K Strontium-containing hydroxyapatite bioactivebone cement in revision hip arthroplastyBiomaterials 2006 27(24)43484355. doi:10.1016/j.biomaterials.2006.03.048
50. Fujita R Yokoyama A Nodasaka Y Kohgo T Kawasaki T Ultrastructure of ceramic-bone interfaceusing hydroxyapatite and beta-tricalcium phosphate ceramics and replacementmechanism of beta-tricalcium phosphate in boneTissue Cell 2003 35(6)427440. doi:10.1016/S0040‐8166(03)00067‐3
51. Chen Q Z Wong C T Lu W W Cheung K M C Leong J C Y Luk K D K Strengthening mechanisms of bone bonding to crystalline hydroxyapatitein vivoBiomaterials 2004 25(18)42434254. doi:10.1016/j.biomaterials.2003.11.017
52. Karabatsos B Myerthall S L Fornasier V L Binnington A Maistrelli G L Osseointegration of hydroxyapatiteporous-coated femoral implants in a canine modelClin Orthop Relat Res 2001 (392)442449
53. Cook S D Thomas K A Dalton J E Volkman T K Whitecloud T S Kay J F Hydroxylapatite coating of porous implants improves boneingrowth and interface attachment strengthJ Biomed Mater Res 1992 26(8)9891001. doi:10.1002/jbm.820260803
54. Niedhart C Maus U Piroth W Miltner O Schmidt-Rohlfing B Siebert C H Evaluation of a resorbable, in situ setting bone substitutein a sheep modelJ Biomed Mater Res B ApplBiomater 2004 71(1)123129. doi:10.1002/jbm.b.30071
55. Lu W W Cheung K M C Luk K D K Leong J C Y A novel Sr-HAbioactive bone cement for vertebroplastyProceedings of 38th Annual Meeting of the Scoliosis Research Society 2003 Quebec City, Canadap156
56. Cheung K M C Vertebroplasty by use of a new bioactive bone cementPre-meeting Course of the 39th Annual Meeting of the Scoliosis ResearchSocietyBuenos Aires, Argentina September 5, 2004
AI Summary AI Mindmap
PDF(467 KB)

Accesses

Citations

Detail

Sections
Recommended

/