We show that a best rank one approximation to a real symmetric tensor, which in principle can be nonsymmetric, can be chosen symmetric. Furthermore, a symmetric best rank one approximation to a symmetric tensor is unique if the tensor does not lie on a certain real algebraic variety.
The real rectangular tensors arise from the strong ellipticity condition problem in solid mechanics and the entanglement problem in quantum physics. In this paper, we study the singular values/vectors problem of real nonnegative partially symmetric rectangular tensors. We first introduce the concepts of
Based on the generalized characteristic polynomial introduced by J. Canny in
We study the real and complex geometric simplicity of nonnegative irreducible tensors. First, we prove some basic conclusions. Based on the conclusions, the real geometric simplicity of the spectral radius of an evenorder nonnegative irreducible tensor is proved. For an odd-order nonnegative irreducible tensor, sufficient conditions are investigated to ensure the spectral radius to be real geometrically simple. Furthermore, the complex geometric simplicity of nonnegative irreducible tensors is also studied.
An algorithm for finding the largest singular value of a nonnegative rectangular tensor was recently proposed by Chang, Qi, and Zhou [J. Math. Anal. Appl., 2010, 370: 284–294]. In this paper, we establish a linear convergence rate of the Chang-Qi-Zhou algorithm under a reasonable assumption.
Consider the problem of computing the largest eigenvalue for nonnegative tensors. In this paper, we establish the Q-linear convergence of a power type algorithm for this problem under a weak irreducibility condition. Moreover, we present a convergent algorithm for calculating the largest eigenvalue for any nonnegative tensors.
We study the representations of the restricted two-parameter quantum groups of types
In this paper, the Klein-Gordon equation (KGE) with power law nonlinearity will be considered. The bifurcation analysis as well as the ansatz method of integration will be applied to extract soliton and other wave solutions. In particular, the second approach to integration will lead to a singular soliton solution. However, the bifurcation analysis will reveal several other solutions that are of prime importance in relativistic quantum mechanics where this equation appears.
The principal filtration of the infinite-dimensional odd contact Lie superalgebra over a field of characteristic
The base graph of a simple matroid
We give a characterization of the λ-central BMO space via the boundedness of commutators of n-dimensional Hardy operators.