H-Eigenvalues of signless Laplacian tensor for an even uniform hypergraph

Jinshan Xie , An Chang

Front. Math. China ›› 2013, Vol. 8 ›› Issue (1) : 107 -127.

PDF (167KB)
Front. Math. China ›› 2013, Vol. 8 ›› Issue (1) : 107 -127. DOI: 10.1007/s11464-012-0266-6
Research Article
RESEARCH ARTICLE

H-Eigenvalues of signless Laplacian tensor for an even uniform hypergraph

Author information +
History +
PDF (167KB)

Abstract

The signless Laplacian tensor and its H-eigenvalues for an even uniform hypergraph are introduced in this paper. Some fundamental properties of them for an even uniform hypergraph are obtained. In particular, the smallest and the largest H-eigenvalues of the signless Laplacian tensor for an even uniform hypergraph are discussed, and their relationships to hypergraph bipartition, minimum degree, and maximum degree are described. As an application, the bounds of the edge cut and the edge connectivity of the hypergraph involving the smallest and the largest H-eigenvalues are presented.

Keywords

Signless Laplacian tensor / hypergraph / H-eigenvalue / bipartition / maximum degree / bound / edge cut

Cite this article

Download citation ▾
Jinshan Xie, An Chang. H-Eigenvalues of signless Laplacian tensor for an even uniform hypergraph. Front. Math. China, 2013, 8(1): 107-127 DOI:10.1007/s11464-012-0266-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Brouwer A. E., Haemers W. H.. Spectra of Graphs, 2011, Berlin: Springer

[2]

Cartwright D., Sturmfels B.. The number of eigenvalues of a tensor. Linear Algebra Appl, 2013, 438(2): 942-952

[3]

Chang K. C., Pearson K., Zhang T.. Perron Frobenius Theorem for nonnegative tensors. Commun Math Sci, 2008, 6: 507-520

[4]

Chang K. C., Pearson K., Zhang T.. Primitivity, the convergence of the NQZ method, and the largest eigenvalue for nonnegative tensors, 2010, Beijing, China, Preprint: School of Mathematical Sciences, Peking University

[5]

Chang K. C., Pearson K., Zhang T.. Some variational principles of the Z-eigenvalues for nonnegative tensors, 2011, Beijing, China: School of Mathematical Sciences, Peking University

[6]

Chang K. C., Qi L., Zhou G.. Singular values of a real rectangular tensor. J Math Anal Appl, 2010, 370: 284-294

[7]

Chung F. R. K.. Spectral Graph Theory, 1997, Providence: Amer Math Soc

[8]

Cooper J., Dutle A.. Spectra of uniform hypergraphs. Linear Algebra Appl, 2012, 436(9): 3268-3292

[9]

Cvetković D., Rowlinson P., Simić S. K.. Eigenvalue bounds for the signless Laplacian. Publ Inst Math (Beograd), 2007, 95(81): 11-27

[10]

Fiedler M.. Algebraic connectivity of graphs. Czech Math J, 1973, 98(23): 298-305

[11]

Hu S., Qi L.. Algebraic connectivity of an even uniform hypergraph. J Comb Optim, 2012, 24(4): 564-579

[12]

Kolda T. G., Bader B. W.. Tensor decompositions and applications. SIAM Review, 2009, 51: 455-500

[13]

Lim L. -H.. Singular values and eigenvalues of tensors: a variational approach. Proceedings of the IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP ′05), 2005, 1: 129-132

[14]

Ni G., Qi L., Wang F., Wang Y.. The degree of the E-characteristic polynomial of an even order tensor. J Math Anal Appl, 2007, 329: 1218-1229

[15]

Qi L.. Eigenvalues of a real supersymmetric tensor. J Symbolic Comput, 2005, 40: 1302-1324

[16]

Qi L.. Eigenvalues and invariants of tensors. J Math Anal Appl, 2007, 325: 1363-1377

[17]

Qi L. The spectral theory of tensors. arXiv: 1201.3424v1 [math.SP]

[18]

Qi L., Sun W., Wang Y.. Numerical multilinear algebra and its applications. Front Math China, 2007, 2(4): 501-526

[19]

Rota Bulò S., Pelillo M.. A generalization of the Motzkin-Straus theorem to hypergraphs. Optim Lett, 2009, 3: 287-295

[20]

Rota Bulò S., Pelillo M.. Stützle T.. New bounds on the clique number of graphs based on spectral hypergraph theory. Learning and Intelligent Optimization, 2009, Berlin: Springer-Verlag 45 48

[21]

Van Loan C. Future directions in tensor-based computation and modeling. Workshop Report in Arlington, Virginia at National Science Foundation, February 20–21, 2009. http://www.cs.cornell.edu/cv/TenWork/Home.htm

[22]

Yang Q., Yang Y.. Further results for Perron-Frobenius Theorem for nonnegative tensors II. SIAM J Matrix Anal Appl, 2011, 32: 1236-1250

[23]

Yang Y., Yang Q.. Further results for Perron-Frobenius theorem for nonnegative tensors. SIAM J Matrix Anal Appl, 2010, 31: 2517-2530

[24]

Yang Y., Yang Q.. Singular values of nonnegative rectangular tensors. Front Math China, 2011, 6(2): 363-378

AI Summary AI Mindmap
PDF (167KB)

905

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/