H-Eigenvalues of signless Laplacian tensor for an even uniform hypergraph
Jinshan XIE, An CHANG
H-Eigenvalues of signless Laplacian tensor for an even uniform hypergraph
The signless Laplacian tensor and its H-eigenvalues for an even uniform hypergraph are introduced in this paper. Some fundamental properties of them for an even uniform hypergraph are obtained. In particular, the smallest and the largest H-eigenvalues of the signless Laplacian tensor for an even uniform hypergraph are discussed, and their relationships to hypergraph bipartition, minimum degree, and maximum degree are described. As an application, the bounds of the edge cut and the edge connectivity of the hypergraph involving the smallest and the largest H-eigenvalues are presented.
Signless Laplacian tensor / hypergraph / H-eigenvalue / bipartition / maximum degree / bound / edge cut
[1] |
Brouwer A E, Haemers W H. Spectra of Graphs. Berlin: Springer, 2011
|
[2] |
Cartwright D, Sturmfels B. The number of eigenvalues of a tensor. Linear Algebra Appl, 2013, 438(2): 942-952
CrossRef
Google scholar
|
[3] |
Chang K C, Pearson K, Zhang T. Perron Frobenius Theorem for nonnegative tensors. Commun Math Sci, 2008, 6: 507-520
|
[4] |
Chang K C, Pearson K, Zhang T. Primitivity, the convergence of the NQZ method, and the largest eigenvalue for nonnegative tensors. School of Mathematical Sciences, Peking University, Beijing, China, Preprint, 2010
|
[5] |
Chang K C, Pearson K, Zhang T. Some variational principles of the Z-eigenvalues for nonnegative tensors. School of Mathematical Sciences, Peking University, Beijing, China, Preprint, 2011. http://www.mathinst.pku.edu.cn/data/upload/month 201112/ 2011-no44 dp47rB.pdf
|
[6] |
Chang K C, Qi L, Zhou G. Singular values of a real rectangular tensor. J Math Anal Appl, 2010, 370: 284-294
CrossRef
Google scholar
|
[7] |
Chung F R K. Spectral Graph Theory. Providence: Amer Math Soc, 1997
|
[8] |
Cooper J, Dutle A. Spectra of uniform hypergraphs. Linear Algebra Appl, 2012, 436(9): 3268-3292
CrossRef
Google scholar
|
[9] |
Cvetković D, Rowlinson P, Simić S K. Eigenvalue bounds for the signless Laplacian. Publ Inst Math (Beograd), 2007, 95(81): 11-27
CrossRef
Google scholar
|
[10] |
Fiedler M. Algebraic connectivity of graphs. Czech Math J, 1973, 98(23): 298-305
|
[11] |
Hu S, Qi L. Algebraic connectivity of an even uniform hypergraph. J Comb Optim, 2012, 24(4): 564-579
CrossRef
Google scholar
|
[12] |
Kolda T G, Bader B W. Tensor decompositions and applications. SIAM Review, 2009, 51: 455-500
CrossRef
Google scholar
|
[13] |
Lim L-H. Singular values and eigenvalues of tensors: a variational approach. In: Proceedings of the IEEE InternationalWorkshop on Computational Advances in Multi- Sensor Adaptive Processing (CAMSAP ’05), Vol 1. 2005, 129-132
|
[14] |
Ni G, Qi L, Wang F, Wang Y. The degree of the E-characteristic polynomial of an even order tensor. J Math Anal Appl, 2007, 329: 1218-1229
CrossRef
Google scholar
|
[15] |
Qi L. Eigenvalues of a real supersymmetric tensor. J Symbolic Comput, 2005, 40: 1302-1324
CrossRef
Google scholar
|
[16] |
Qi L. Eigenvalues and invariants of tensors. J Math Anal Appl, 2007, 325: 1363-1377
CrossRef
Google scholar
|
[17] |
Qi L. The spectral theory of tensors. arXiv: 1201.3424v1 [math.SP]
|
[18] |
Qi L, Sun W, Wang Y. Numerical multilinear algebra and its applications. Front Math China, 2007, 2(4): 501-526
CrossRef
Google scholar
|
[19] |
Rota Bulò S, Pelillo M. A generalization of the Motzkin-Straus theorem to hypergraphs. Optim Lett, 2009, 3: 287-295
CrossRef
Google scholar
|
[20] |
Rota Bulò S, Pelillo M. New bounds on the clique number of graphs based on spectral hypergraph theory. In: Stützle T, ed. Learning and Intelligent Optimization. Berlin: Springer-Verlag, 2009, 45-48
CrossRef
Google scholar
|
[21] |
Van Loan C. Future directions in tensor-based computation and modeling. Workshop Report in Arlington, Virginia at National Science Foundation, <month>February</month><day>20-21</day>, 2009. http://www.cs.cornell.edu/cv/TenWork/Home.htm
|
[22] |
Yang Q, Yang Y. Further results for Perron-Frobenius Theorem for nonnegative tensors II. SIAM J Matrix Anal Appl, 2011, 32: 1236-1250
CrossRef
Google scholar
|
[23] |
Yang Y, Yang Q. Further results for Perron-Frobenius theorem for nonnegative tensors. SIAM J Matrix Anal Appl, 2010, 31: 2517-2530
CrossRef
Google scholar
|
[24] |
Yang Y, Yang Q. Singular values of nonnegative rectangular tensors. Front Math China, 2011, 6(2): 363-378
CrossRef
Google scholar
|
/
〈 | 〉 |