Nonnegative non-redundant tensor decomposition

Olexiy KYRGYZOV, Deniz ERDOGMUS

PDF(681 KB)
PDF(681 KB)
Front. Math. China ›› DOI: 10.1007/s11464-012-0261-y
RESEARCH ARTICLE
RESEARCH ARTICLE

Nonnegative non-redundant tensor decomposition

Author information +
History +

Abstract

Nonnegative tensor decomposition allows us to analyze data in their ‘native’ form and to present results in the form of the sum of rank-1 tensors that does not nullify any parts of the factors. In this paper, we propose the geometrical structure of a basis vector frame for sum-of-rank-1 type decomposition of real-valued nonnegative tensors. The decomposition we propose reinterprets the orthogonality property of the singularvectors of matrices as a geometric constraint on the rank-1 matrix bases which leads to a geometrically constrained singularvector frame. Relaxing the orthogonality requirement, we developed a set of structured-bases that can be utilized to decompose any tensor into a similar constrained sum-of-rank-1 decomposition. The proposed approach is essentially a reparametrization and gives us an upper bound of the rank for tensors. At first, we describe the general case of tensor decomposition and then extend it to its nonnegative form. At the end of this paper, we show numerical results which conform to the proposed tensor model and utilize it for nonnegative data decomposition.

Keywords

matrix / tensor / rank-1 decomposition / basis vector frame

Cite this article

Download citation ▾
Olexiy KYRGYZOV, Deniz ERDOGMUS. Nonnegative non-redundant tensor decomposition. Front Math Chin, https://doi.org/10.1007/s11464-012-0261-y

References

[1]
Bronshtein I N, Semendyayev K A, Musiol G, Muehling H. Handbook of Mathematics. 4th ed. Berlin: Springer-Verlag, 2007
[2]
Carroll J, Chang J-J. Analysis of individual differences in multidimensional scaling via an n-way generalization of Eckart-Younga decomposition. Psychometrika, 1970, 35(3): 283-319
CrossRef Google scholar
[3]
Cichocki A, Zdunek R, Phan A H, Amari S. Nonnegative Matrix and Tensor Factorizations: Applications to Exploratory Multi-way Data Analysis and Blind Source Separation. Hoboken: John Wiley & Sons, Ltd, 2009
[4]
Comon P, Golub G, Lim L-H, Mourrain B. Symmetric tensors and symmetric tensor rank. SIAM J Matrix Anal Appl, 2008, 30: 1254-1279
CrossRef Google scholar
[5]
Comon P, Mourrain B. Decomposition of quantics in sums of powers of linear forms. Signal Processing, 1996, 53: 93-107
CrossRef Google scholar
[6]
Edelman A, Murakami H. Polynomial roots from companion matrix eigenvalues. Math Comp, 1995, 64: 763-776
CrossRef Google scholar
[7]
Goldstine H H, Murray F J, von Neumann J. The Jacobi method for real symmetric matrices. J ACM, 1959, 6(1): 59-96
CrossRef Google scholar
[8]
Golub G H, Van Loan C F. Matrix Computations. 3rd ed. Baltimore: Johns Hopkins University Press, 1996
[9]
Harshman R A. Foundations of the PARAFAC procedure: Models and conditions for an explanatory multi-modal factor analysis. UCLAWorking Papers in Phonetics, 1970, 16(1): 84
[10]
Kolda T G, Bader B W. Tensor decompositions and applications. SIAM Review, 2009, 51(3): 455-500
CrossRef Google scholar
[11]
Kyrgyzov O, Erdogmus D. Geometric structure of sum-of-rank-1 decompositions for n-dimensional order-p symmetric tensors. In: ISCAS, Seattle, WA, USA, 2008. 2008, 1340-1343
[12]
Kyrgyzov O. Non-redundant tensor decomposition. https://sites.google.com/site/kyrgyzov/tensor
[13]
Kyrgyzov O, Erdogmus D. Non-redundant tensor decomposition. NIPS, Tensor Workshop, 2010
[14]
Lathauwer L D, Moor B D, Vandewalle J. A multilinear singular value decomposition. SIAM J Matrix Anal Appl, 2000, 21(4): 1253-1278
CrossRef Google scholar
[15]
Lathauwer L D, Moor B D, Vandewalle J. On the best rank-1 and rank-(R1,R2, . . . , RN) approximation of higher-order tensors. SIAM J Matrix Anal Appl, 2000, 21(4): 1324- 1342
CrossRef Google scholar
[16]
Lovisolo L, da Silva E. Uniform distribution of points on a hyper-sphere with applications to vector bit-plane encoding. IEE Proceedings: Vision, Image and Signal Processing, 2001, 148(3): 187-193
CrossRef Google scholar
[17]
Minati L, Aquino D. Probing neural connectivity through diffusion tensor imaging DTI. In: Trappl R, ed. Cybernetics and Systems. Vienna: ASCS, 2006: 263-268
[18]
Steinhaus H. Mathematical Snapshots. 3ed ed. New York: Dover Publications1999
[19]
Tucker L. Some mathematical notes on three-mode factor analysis. Psychometrika, 1966, 31(3): 279-311
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(681 KB)

Accesses

Citations

Detail

Sections
Recommended

/