lk,s-Singular values and spectral radius of rectangular tensors

Chen LING, Liqun QI

PDF(185 KB)
PDF(185 KB)
Front. Math. China ›› 2013, Vol. 8 ›› Issue (1) : 63-83. DOI: 10.1007/s11464-012-0265-7
RESEARCH ARTICLE
RESEARCH ARTICLE

lk,s-Singular values and spectral radius of rectangular tensors

Author information +
History +

Abstract

The real rectangular tensors arise from the strong ellipticity condition problem in solid mechanics and the entanglement problem in quantum physics. In this paper, we study the singular values/vectors problem of real nonnegative partially symmetric rectangular tensors. We first introduce the concepts of lk,s-singular values/vectors of real partially symmetric rectangular tensors. Then, based upon the presented properties of lk,s-singular values /vectors, some properties of the related lk,s-spectral radius are discussed. Furthermore, we prove two analogs of Perron-Frobenius theorem and weak Perron-Frobenius theorem for real nonnegative partially symmetric rectangular tensors.

Keywords

Nonnegative rectangular tensor / lk / s-singular value / lk / s-spectral radius / irreducibility / weak irreducibility

Cite this article

Download citation ▾
Chen LING, Liqun QI. lk,s-Singular values and spectral radius of rectangular tensors. Front Math Chin, 2013, 8(1): 63‒83 https://doi.org/10.1007/s11464-012-0265-7

References

[1]
Chang K C, Pearson K, Zhang T. Perron Frobenius theorem for nonnegative tensors. Commun Math Sci, 2008, 6: 507-520
[2]
Chang K C, Qi L, Zhou G. Singular values of a real rectangular tensor. J Math Anal Appl, 2010, 370: 284-294
CrossRef Google scholar
[3]
Dahl D, Leinass J M, Myrheim J, E. Ovrum E. A tensor product matrix approximation problem in quantum physics. Linear Algebra Appl, 2007, 420: 711-725
CrossRef Google scholar
[4]
Einstein A, Podolsky B, Rosen N. Can quantum-mechanical description of physical reality be considered complete? Phys Rev, 1935, 47: 777-780
CrossRef Google scholar
[5]
Friedland S, Gaubert S, Han L. Perron-Frobenius theorem for nonnegative multilinear forms and extensions. Linear Algebra Appl, 2013, 438: 738-749
CrossRef Google scholar
[6]
Gaubert S, Gunawardena J. The Perron-Frobenius theorem for homogeneous, monotone functions. Trans Amer Math Soc, 2004, 356: 4931-4950
CrossRef Google scholar
[7]
Knowles J K, Sternberg E. On the ellipticity of the equations of non-linear elastostatics for a special material. J Elasticity, 1975, 5: 341-361
CrossRef Google scholar
[8]
Knowles J K, Sternberg E. On the failure of ellipticity of the equations for finite elastostatic plane strain. Arch Ration Mech Anal, 1977, 63: 321-336
CrossRef Google scholar
[9]
Krein M G, Rutman M A. Linear operators leaving invariant a cone in a Banach space. Uspekhi Mat Nauk, 1948, 3(1): 23 (in Russian); Amer Math Soc Transl, No 26 (English transl)
[10]
Lim L-H. Singular values and eigenvalues of tensors: a variational approach. In: Proceedings of the IEEE InternationalWorkshop on Computational Advances in Multi- Sensor Adaptive Processing, 1. 2005, 129-132
[11]
Nussbaum R D. Convexity and log convexity for the spectral radius. Linear Algebra Appl, 1986, 73: 59-122
CrossRef Google scholar
[12]
Nussbaum R D. Hilbert’s Projective Metric and Iterated Nonlinear Maps. Mem Amer Math Soc, Vol 75, No 391. Providence: Amer Math Soc, 1988
[13]
Qi L. Eigenvalues of a real supersymmetric tensor. J Symbolic Comput, 2005, 40: 1302-1324
CrossRef Google scholar
[14]
Rosakis P. Ellipticity and deformations with discontinuous deformation gradients in finite elastostatics. Arch Ration Mech Anal, 1990, 109: 1-37
CrossRef Google scholar
[15]
Schröinger E. Die gegenwätige situation in der quantenmechanik. Naturwissenschaften, 1935, 23: 807-812, 823-828, 844-849
CrossRef Google scholar
[16]
Wang Y, Aron M. A reformulation of the strong ellipticity conditions for unconstrained hyperelastic media. J Elasticity, 1996, 44: 89-96
CrossRef Google scholar
[17]
Yang Y, Yang Q. Singular values of nonnegative rectangular tensors. Front Math China, 2011, 6(2): 363-378
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(185 KB)

Accesses

Citations

Detail

Sections
Recommended

/