In this summary paper, we will introduce some recent progress in the theory of Marcinkiewicz integral and will pay more attention to the case of rough kernels.
In this paper, we propose a class of higher-order stochastic partial differential equations (SPDEs) with branching noises. The existence of weak (mild) solutions is established through weak convergence and tightness arguments.
This paper deals with asymptotic analysis of a parabolic system with inner absorptions and coupled nonlinear boundary fluxes. Three simultaneous blow-up rates are established under different dominations of nonlinearities, and simply represented in a characteristic algebraic system introduced for the problem. In particular, it is observed that two of the multiple blow-up rates are absorption-related. This is substantially different from those for nonlinear parabolic problems with absorptions in all the previous literature, where the blow-up rates were known as absorptionindependent. The results of the paper rely on the scaling method with a complete classification for the nonlinear parameters of the model. The first example of absorption-related blow-up rates was recently proposed by the authors for a coupled parabolic system with mixed type nonlinearities. The present paper shows that the newly observed phenomena of absorptionrelated blow-up rates should be due to the coupling mechanism, rather than the mixed type nonlinearities.
Let L be the skew derivation Lie algebra of the quantum torus ℂq. In this paper, we give a class of irreducible representations for L with infinite dimensional weight spaces.
In this paper, an adaptive nonmonotone line search method for unconstrained minimization problems is proposed. At every iteration, the new algorithm selects only one of the two directions: a Newton-type direction and a negative curvature direction, to perform the line search. The nonmonotone technique is included in the backtracking line search when the Newton-type direction is the search direction. Furthermore, if the negative curvature direction is the search direction, we increase the steplength under certain conditions. The global convergence to a stationary point with second-order optimality conditions is established. Some numerical results which show the efficiency of the new algorithm are reported.