Higher-order stochastic partial differential equations with branching noises

BO Lijun1, WANG Yongjin2, YAN Liqing3

PDF(209 KB)
PDF(209 KB)
Front. Math. China ›› 2008, Vol. 3 ›› Issue (1) : 15-35. DOI: 10.1007/s11464-008-0006-0

Higher-order stochastic partial differential equations with branching noises

  • BO Lijun1, WANG Yongjin2, YAN Liqing3
Author information +
History +

Abstract

In this paper, we propose a class of higher-order stochastic partial differential equations (SPDEs) with branching noises. The existence of weak (mild) solutions is established through weak convergence and tightness arguments.

Cite this article

Download citation ▾
BO Lijun, WANG Yongjin, YAN Liqing. Higher-order stochastic partial differential equations with branching noises. Front. Math. China, 2008, 3(1): 15‒35 https://doi.org/10.1007/s11464-008-0006-0

References

1. Beghin L Orsingher E Ragozina T Joint distributions of the maximum and the process forhigher-order diffusionsStoch Process Appl 2001 947193. doi:10.1016/S0304‐4149(00)00105‐8
2. Bo L Wang Y Stochastic Cahn-Hilliard partialdifferential equations with Lévy spacetime white noisesStoch Dyn 2006 6229244. doi:10.1142/S0219493706001736
3. Cardon-Weber C Cahn-Hilliardstochastic equation: existence of the solution and of its densityBernoulli 2001 7777816. doi:10.2307/3318542
4. Cardon-Weber C Millet A On strongly Petrovskiii's parabolicSPDEs in arbitrary dimension and application to the stochastic Cahn-HilliardequationJ Theor Probab 2004 17149. doi:10.1023/B:JOTP.0000020474.79479.fa
5. Da Prato G Debussche A Stochastic Cahn-Hilliard equationNonlinear Anal 1996 26241263. doi:10.1016/0362‐546X(94)00277‐O
6. Da Prato G Zabczyk J Ergodicity for Infinite DimensionalSystemsCambridgeCambridge Univ Press 1996
7. Dalang R Extendingmartingale measure stochastic integral with applications to spatiallyhomogeneous SPDEsElectron J Probab 1999 4129
8. Donati-Martin C Pardoux E White noise driven SPDEs withreflectionProbab Th Rel Fields 1993 95124. doi:10.1007/BF01197335
9. Ethier S Kurtz T Markov Processes, Characterizationand ConvergenceNew YorkWiley & Sons 1986
10. Gyöngy I Existenceand uniqueness results for semilinear stochastic partial differentialequationsStoch Process Appl 1998 73271299. doi:10.1016/S0304‐4149(97)00103‐8
11. Hochberg J Orsingher E The arc-sine law and its analogsfor processes governed by signed and complex measuresStoch Process Appl 1994 52273292. doi:10.1016/0304‐4149(94)90029‐9
12. Kolkovska E Onthe Burgers equation with a stochastic stepping stone noisy termJ Math Sci 2004 12126452652. doi:10.1023/B:JOTH.0000027030.09774.05
13. Konno N Shiga T Stochastic partial differentialequations for some measure-valued diffusionsProbab Th Rel Fields 1988 79201225. doi:10.1007/BF00320919
14. Lachal A Distributionsof sojourn time, maximum and minimum for pseudo-processes governedby higher-order heat-type equationsElectronJ Probab 2003 8153
15. Millet A Morien P On a nonlinear stochastic waveequation in the plane: existence and uniqueness of the solutionAnn Appl Probab 2001 11922951
16. Mueller C Long-timeexistence for signed solution of the heat equation with a noise termProbab Th Rel Fields 1998 1105168. doi:10.1007/s004400050144
17. Shiga T Twocontrasting properties of solutions for one-dimension stochastic partialdifferential equationsCan J Math 1994 46415437
18. Walsh J AnIntroduction to Stochastic Partial Differential EquationsBerlinSpringer-Verlag 1986
AI Summary AI Mindmap
PDF(209 KB)

Accesses

Citations

Detail

Sections
Recommended

/