Least squares estimator of Ornstein-Uhlenbeck processes driven by fractional Lévy processes with periodic mean

Guangjun SHEN , Qian YU , Yunmeng LI

Front. Math. China ›› 2019, Vol. 14 ›› Issue (6) : 1281 -1302.

PDF (313KB)
Front. Math. China ›› 2019, Vol. 14 ›› Issue (6) : 1281 -1302. DOI: 10.1007/s11464-019-0801-9
RESEARCH ARTICLE
RESEARCH ARTICLE

Least squares estimator of Ornstein-Uhlenbeck processes driven by fractional Lévy processes with periodic mean

Author information +
History +
PDF (313KB)

Abstract

We deal with the least squares estimator for the drift parameters of an Ornstein-Uhlenbeck process with periodic mean function driven by fractional Lévy process. For this estimator, we obtain consistency and the asymptotic distribution. Compared with fractional Ornstein-Uhlenbeck and Ornstein-Uhlenbeck driven by Lévy process, they can be regarded both as a Lévy generalization of fractional Brownian motion and a fractional generaliza- tion of Lévy process.

Keywords

Least squares estimator / Ornstein-Uhlenbeck processes / fractional Lévy processes / asymptotic distribution

Cite this article

Download citation ▾
Guangjun SHEN, Qian YU, Yunmeng LI. Least squares estimator of Ornstein-Uhlenbeck processes driven by fractional Lévy processes with periodic mean. Front. Math. China, 2019, 14(6): 1281-1302 DOI:10.1007/s11464-019-0801-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bajja S, Es-Sebaiy K, Viitasaari L. Least squares estimator of fractional Ornstein Uhlenbeck processes with periodic mean. J Korean Statist Soc, 2017, 46: 608–622

[2]

Benassi A, Cohen S, Istas J. Identification and properties of real harmonizable fractional Lévy motions. Bernoulli, 2002, 8: 97–115

[3]

Benassi A, Cohen S, Istas J. On roughness indices for fractional fields. Bernoulli, 2004, 10: 357–373

[4]

Bender C, Knobloch R, Oberacker P. Maximal inequalities for fractional Lévy and related processes. Stoch Anal Appl, 2015, 33: 701–714

[5]

Bender C, Lindner A, Schicks M. Finite variation of fractional Lévy processes. J Theoret Probab, 2002, 25: 594–612

[6]

Bercu B, Proïa F, Savy N. On Ornstein-Uhlenbeck driven by Ornstein-Uhlenbeck processes. Statist Probab Lett, 2014, 85: 36–44

[7]

Brockwell P J, Davis R A, Yang Y. Estimation for non-negative Lévy-driven Ornstein- Uhlenbeck processes. J Appl Probab, 2007, 44: 977–989

[8]

Brouste A, Iacus S M. Parameter estimation for the discretely observed fractional Ornstein-Uhlenbeck process and the Yuima R package. Comput Statist, 2013, 28: 1529–1547

[9]

Cheridito P, Kawaguchi H, Maejima M. Fractional Ornstein-Uhlenbeck processes. Electron J Probab, 2003, 8: 1–14

[10]

Dasgupta A, Kallianpur G. Multiple fractional integrals. Probab Theory Related Fields, 1999, 115: 505–525

[11]

Dehling H, Franke B, Woerner J H C. Estimating drift parameters in a fractional Ornstein Uhlenbeck process with periodic mean. Stat Inference Stoch Process, 2017, 20: 1–14

[12]

Engelke S, Woerner J H C. A unifying approach to fractional Lévy processes. Stoch Dyn, 2013, 13: 1250017 (19 pp)

[13]

Es-Sebaiy K, Viens F. Parameter estimation for SDEs related to stationary Gaussian processes. arXiv: 1501.04970

[14]

Fink H, Klüppelberg C. Fractional Lévy-driven Ornstein-Uhlenbeck processes and stochastic differential equations. Bernoulli, 2011, 17: 484–506

[15]

Franke B, Kott T. Parameter estimation for the drift of a time-inhomogeneous jump diffusion process. Stat Neerl, 2013, 67: 145–168

[16]

Hu Y, Nualart D. Parameter estimation for fractional Ornstein-Uhlenbeck processes. Statist Probab Lett, 2010, 80: 1030–1038

[17]

Hu Y, Nualart D, Zhou H. Drift parameter estimation for nonlinear stochastic differential equations driven by fractional Brownian motion. Stochastics, 2019, 91: 1067–1091

[18]

Jiang H, Dong X. Parameter estimation for the non-stationary Ornstein-Uhlenbeck process with linear drift. Statist Papers, 2015, 56: 257–268

[19]

Kleptsyna M, Le Breton A. Statistical analysis of the fractional Ornstein-Uhlenbeck type process. Stat Inference Stoch Process, 2002, 5: 229–248

[20]

Lacaux C. Real harmonizable multifractional Lévy motions. Ann Inst Henri Poincaré Probab Stat, 2004, 40: 259–277

[21]

Lin Z, Cheng Z. Existence and joint continuity of local time of multiparameter fractional Lévy processes. Appl Math Mech (English Ed), 2009, 30: 381–390

[22]

Long H. Least squares estimator for discretely observed Ornstein-Uhlenbeck processes with small Lévy noises. Statist Probab Lett, 2009, 79: 2076–2085

[23]

Long H, Ma C, Shimizu Y. Least squares estimators for stochastic differential equations driven by small Lévy noises. Stochastic Process Appl, 2017, 127: 1475–1495

[24]

Long H, Shimizu Y, Sun W. Least squares estimators for discretely observed stochastic processes driven by small Lévy noises. J Multivariate Anal, 2013, 116: 422–439

[25]

Ma C. A note on “Least squares estimator for discretely observed Ornstein-Uhlenbeck processes with small Lévy noises.” Statist Probab Lett, 2010, 80: 1528–1531

[26]

Ma C, Yang X. Small noise fluctuations of the CIR model driven by α-stable noises. Statist Probab Lett, 2014, 94: 1–11

[27]

Mandelbrot B B, Van Ness J W. Fractional Brownian motions, fractional noises and applications. SIAM Rev, 1968, 10: 422–437

[28]

Mao X, Yuan C. Stochastic Differential Equations with Markovian Switching. London: Imperial College Press, 2006

[29]

Marquardt T. Fractional Lévy processes with an application to long memory moving average processes. Bernoulli, 2006, 12: 1009–1126

[30]

Onsy B E, Es-Sebaiy K, Viens F. Parameter estimation for a partially observed Ornstein-Uhlenbeck process with long-memory noise. Stochastics, 2017, 89: 431–468

[31]

Samorodnitsky G, Taqqu M. Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Varice. New York: Champman & Hall, 1994

[32]

Sato K. Lévy processes and infinitely divisible distributions. Cambridge: Cambridge Univ Press, 1999

[33]

Shen G, Li Y, Gao Z. Parameter estimation for Ornstein–Uhlenbeck processes driven by fractional Lévy process. J Inequal Appl, 2018, 356: 1–14

[34]

Shen G, Yu Q. Least squares estimator for Ornstein-Uhlenbeck processes driven by fractional Lévy processes from discrete observations. Statist Papers,

[35]

Tikanmäki H, Mishura Y. Fractional Lévy processes as a result of compact interval integral transformation. Stoch Anal Appl, 2011, 29: 1081–1101

[36]

Xiao W, Zhang W, Xu W. Parameter estimation for fractional Ornstein-Uhlenbeck processes at discrete observation. Appl Math Model, 2011, 35: 4196–4207

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (313KB)

643

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/