Semi-conformal structure on certain vertex superalgebras associated to vertex superalgebroids

Ming LI

Front. Math. China ›› 2019, Vol. 14 ›› Issue (5) : 881 -906.

PDF (335KB)
Front. Math. China ›› 2019, Vol. 14 ›› Issue (5) : 881 -906. DOI: 10.1007/s11464-019-0789-1
RESEARCH ARTICLE
RESEARCH ARTICLE

Semi-conformal structure on certain vertex superalgebras associated to vertex superalgebroids

Author information +
History +
PDF (335KB)

Abstract

We frst give the definition of a vertex superalgebroid. Then we construct a family of vertex superalgebras associated to vertex superalgebroids. As the main result, we find a sufficient and necessary condition that these vertex superalgebras are semi-conformal. In addition, we give a concrete example of a semi-conformal vertex superalgebra and apply our results to this superalgebra.

Keywords

Vertex superalgebroid / vertex superalgebra / semi-conformal

Cite this article

Download citation ▾
Ming LI. Semi-conformal structure on certain vertex superalgebras associated to vertex superalgebroids. Front. Math. China, 2019, 14(5): 881-906 DOI:10.1007/s11464-019-0789-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Borcherds R. Vertex algebras, Kac-Moody algebras, and the Monster. Proc Natl Acad Sci USA, 1986, 83: 3068–3071

[2]

Cheung P. Chiral differential operators on supermanifolds. Math Z, 2012, 272: 203–237

[3]

Dzhumadildaev A. Cohomologies of colour Leibniz algebras: pre-simplicial approach. In: Doebner H-D, Dobrev V K, Hilgert J, eds. Lie Theory and Its Applications in Physics III. Singapore: World Scientific, 2000, 124–136

[4]

Frenkel E, Ben-Zvi D. Algebras and Algebraic Curves. Math Surveys Monogr, Vol 88. Providence: Amer Math Soc, 2001

[5]

Frenkel I, Huang Y-Z, Lepowsky J. On Axiomatic Approaches to Vertex Operator Algebras and Modules. Mem Amer Math Soc, Vol 104, No 494. Providence: Amer Math Soc, 1993

[6]

Frenkel I, Lepowsky J, Meurman A. Vertex Operator Algebras and the Monster. Pure Appl Math, Vol 134. Boston: Academic Press, 1988

[7]

Gorbounov V, Malikov F, Schechtman V. Gerbes of chiral differential operators, II, Vertex algebroids. Invent Math, 2004, 155: 605–680

[8]

Kac V. Vertex Algebras for Beginners. Univ Lecture Ser, Vol 10. Providence: Amer Math Soc, 1998

[9]

Lepowsky J, Li H-S. Introduction to Vertex Operator Algebras and Their Represen-tations. Progr Math, Vol 227. New York: Springer, 2004

[10]

Li H-S. Symmetric invariant bilinear forms on vertex operator algebras. J Pure Appl Algebra, 1994, 96: 279–297

[11]

Li H-S, Yamskulna G. On certain vertex algebras and their modules associated with vertex algebroids. J Algebra, 2005, 283: 367–398

[12]

Li H-S, Yamskulna G. Twisted modules for vertex algebras associated with vertex algebroids. Pacific J Math, 2007, 229: 199–222

[13]

Malikov F. Vertex algebroids a la Beilinson-Drinfeld. Ann Fac Sci Toulouse Math, 2016, 2016: 205–234

[14]

Musson I M. Lie Superalgebras and Enveloping Algebras. Grad Stud Math, Vol 131. Providence: Amer Math Soc, 2012

[15]

Ross L. Representations of graded Lie algebras. Trans Amer Math Soc, 1965, 120: 17{23

[16]

Sole A, Hekmati P, Kac V. Calculus structure on the Lie conformal algebra complex and the variational complex. J Math Phys, 2011, 52: 053510

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (335KB)

472

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/