Oscillatory hyper Hilbert transforms along variable curves

Jiecheng CHEN , Dashan FAN , Meng WANG

Front. Math. China ›› 2019, Vol. 14 ›› Issue (4) : 673 -692.

PDF (317KB)
Front. Math. China ›› 2019, Vol. 14 ›› Issue (4) : 673 -692. DOI: 10.1007/s11464-019-0783-7
RESEARCH ARTICLE
RESEARCH ARTICLE

Oscillatory hyper Hilbert transforms along variable curves

Author information +
History +
PDF (317KB)

Abstract

For n = 2 or 3 and xn, we study the oscillatory hyper Hilbert transform

Tα,βf(x)=f(xΓ(t,x))ei|t|β|t|1αdt
along an appropriate variable curve Γ(t,x) in n (namely, Γ(t,x) is a curve in n for each fixed x), where α>β>0. We obtain some Lp boundedness theorems of Tα,β, under some suitable conditions on αand β. These results are extensions of some earlier theorems. However, Tα,βf(x) is not a convolution in general. Thus, we only can partially employ the Plancherel theorem, and we mainly use the orthogonality principle to prove our main theorems.

Keywords

Hyper Hilbert transform / variable curve

Cite this article

Download citation ▾
Jiecheng CHEN, Dashan FAN, Meng WANG. Oscillatory hyper Hilbert transforms along variable curves. Front. Math. China, 2019, 14(4): 673-692 DOI:10.1007/s11464-019-0783-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bennett J M. Hilbert transforms and maximal functions along variable flat plane curves. Trans Amer Math Soc, 2002, 354: 4871–4892

[2]

Carbery A. A version of Cotlar's lemma for Lp spaces and some applications. In: Marcantognini S A M, Mendoza G A, Moran M D, Octavio A, Urbina W O, eds. Harmonic Analysis and Operator Theory. Contemp Math, Vol 189. Providence: Amer Math Soc, 1995, 117–134

[3]

Carbery A, Christ M, Vance J, Wainger S, Watson D K. Operators associated to flat plan curves: Lp estimates via dilation methods. Duke Math J, 1989, 59: 675–700

[4]

Carbery A, Pérez S. Maximal functions and Hilbert transforms along variable flat curves. Math Res Lett, 1999, 6: 237–249

[5]

Carbery A, Seeger A, Wainger S, Wright J. Classes of singular operators along variable flat curves. J Geom Anal, 1999, 9: 583–605

[6]

Carbery A, Wainger S, Wright J. Hilbert transforms and maximal functions along variable flat plane curves. J Fourier Anal Appl, 1995, Special Issue: 119–139

[7]

Chandarana S. Lp-bounds for hypersingular integral operators along curves. Pacific J Math, 1996, 175: 389–416

[8]

Chen J, Damtew B M, Zhu X. Oscillatory hyper Hilbert transforms along general curves. Front Math China, 2017, 12: 281–299

[9]

Chen J, Fan D, Wang M, Zhu X. Lp bounds for oscillatory hyper-Hilbert transform along curves. Proc Amer Math Soc, 2008, 136: 3145–3153

[10]

Fabes E B, Riviére N M. Singular integrals with mixed homogeneity. Studia Math, 1966, 27: 19–38

[11]

Li J, Yu H. The oscillatory hyper-Hilbert transform associated with plane curves. Canad Math Bull, 2018, 61: 802–811

[12]

Li J, Yu H. Lp boundedness of Hilbert transforms and maximal functions along variable curves. arXiv: 1808.01447v1

[13]

Nagel A, Riviére N M, Wainger S. On Hilbert transform along curves. Bull Amer Math Soc, 1974, 80: 106–108

[14]

Nagel A, Stein E M, Wainger S. Hilbert transforms and maximal functions related to variable curves. In: Weiss G, Wainger S, eds. Harmonic analysis in Euclidean spaces. Proc Sympos Pure Math, Vol 35, Part 1. Providence: Amer Math Soc, 1979, 95–98

[15]

Nagel A, Vance J, Wainger S, Weinberg D. Hilbert transforms for convex curves. Duke Math J, 1983, 50: 735–744

[16]

Nagel A, Wainger S. Hilbert transforms associated with plane curves. Trans Amer Math Soc, 1976, 223: 235–252

[17]

Phone D H, Stein E M. Hilbert integrals, singular integrals and Randon transforms I. Acta Math, 1986, 157: 99–157

[18]

Seeger A. L2-estimates for a class of singular oscillatory integrals. Math Res Lett, 1994, 1: 65–73

[19]

Seeger A, Wainger S. Singular Radon transforms and maximal functions under convexity assumptions. Rev Mat Iberoam, 2003, 19: 1019–1044

[20]

Stein E M, Wainger S. Problems in harmonic analysis related to curvature. Bull Amer Math Soc, 1978, 84: 1239–1295

[21]

Wainger S. Averages and singular integrals over lower dimensional sets. In: Stein E M, ed. Beijing Lectures in Harmonic Analysis. Ann of Math Stud, Vol 112. Princeton: Princeton Univ Press, 1986, 357–421

[22]

Wainger S. Dilations associated with flat curves. Publ Mat, 1991, 35: 251–257

[23]

Zielinski M. Highly Oscillatory Singular Integralsalong Curves. Ph D Dissertation, University of Wisconsin-Madison, Madison, 1985

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (317KB)

848

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/