Continuity of functors with respect to generalized inductive limits

Jiajie HUA , Xiaochun FANG , Xiao-Ming XU

Front. Math. China ›› 2019, Vol. 14 ›› Issue (3) : 551 -566.

PDF (287KB)
Front. Math. China ›› 2019, Vol. 14 ›› Issue (3) : 551 -566. DOI: 10.1007/s11464-019-0772-x
RESEARCH ARTICLE
RESEARCH ARTICLE

Continuity of functors with respect to generalized inductive limits

Author information +
History +
PDF (287KB)

Abstract

Let (Ai,|ϕi,i+1) be a generalized inductive system of a sequence (Ai) of unital separable C*-algebras, with A=limi(Ai,ϕi,i+1). Set ϕj,i=ϕi1,iooϕj+1,j+2oϕj,j+1 for all i>j: We prove that if ϕj,i are order zero completely positive contractions for all j and i>j; and L:=inf{λ|λσ(ϕj,i(1Aj))} for all j and i>j}>0; where σ(ϕj,i(1Aj)) is the spectrum of ϕj,i(1Aj) ; then limi(Cu(ai),Cu(ϕi,i+1))=Cu(A) ; where Cu(A) is a stable version of the Cuntz semigroup of C*-algebra A: Let (An,ϕm,n) be a generalized inductive system of C*-algebras, with the ϕm,n order zero completely positive contractions. We also prove that if the decomposition rank (nuclear dimension) of An is no more than some integer k for each n; then the decomposition rank (nuclear dimension) of A is also no more than k:

Keywords

Completely positive map / order zero / generalized inductive limits / classification of C*-algebra

Cite this article

Download citation ▾
Jiajie HUA, Xiaochun FANG, Xiao-Ming XU. Continuity of functors with respect to generalized inductive limits. Front. Math. China, 2019, 14(3): 551-566 DOI:10.1007/s11464-019-0772-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Antoine R,Perera F, Thiel H. Tensor Products and Regularity Properties of Cuntz Semigroups. Mem Amer Math Soc, Vol 251, No 1199. Providence: Amer Math Soc, 2014

[2]

Ara P,Perera F, Toms A S. K-theory for operator algebras. Classification of C*-algebras. In: Ara P, Lledó F, Perera F, eds. Aspects of Operator Algebras and Applications. Contemp Math, Vol 534. Providence: Amer Math Soc, 2011, 1–71

[3]

Blackadar B. K-Theory for Operator Algebras. New York: Springer-Verlag, 1986

[4]

Blackadar B. Operator Algebras: Theory of C*-algebras and von Neumann Algebras. Operator Algebras and Non-Commutative Geometry, III. Encyclopaedia Math Sci, Vol 122. Berlin: Springer-Verlag, 2006

[5]

Blackadar B, Kirchberg E. Generalize inductive limits of finite-dimensional C*-algebras. Math Ann, 1997, 307: 343–380

[6]

Brown N, Perera F, Toms A S. The Cuntz semigroup, the Elliott conjecture, and dimension functions on C*-algebras. J Reine Angew Math, 2008, 621: 191–211

[7]

Coward K, Elliott G A, Ivanescu C. The Cuntz semigroup as an invariant for C*-algebras. J Reine Angew Math, 2008, 623: 161–193

[8]

Cuntz J. The structure of multiplication and addition in simple C*-algebras. Math Scand, 1977, 40: 215–233

[9]

Elliott G A. The classification problem for amenable C*-algebras. Proceedings of the International Congress of Mathematicians 1994. Basel: Birkh?auser, 1995, 922–932

[10]

Elliott G A, Gong G, Lin H, Niu Z.On the classification of simple amenable C*-algebras with finite decomposition rank, II. arXiv: 1507.03437

[11]

Elliott G A, Niu Z. On the classification of simple amenable C*-algebras with finite decomposition rank. In: Doran R S, Park E, eds. Operator Algebras and Their Applications: A Tribute to Richard V. Kadison. Contemp Math, Vol 671. Providence: Amer Math Soc, 2016, 117–125

[12]

Elliott G A, Toms A S. Regularity properties in the classification program for separable amenable C*-algebras. Bull Amer Math Soc (N S), 2007, 45: 229–245

[13]

Gong G, Lin H, Niu Z. Classification of finite simple amenable Z-stable C*-algebras. arXiv: 1501.00135

[14]

Kirchberg E, Winter W. Covering dimension and quasidiagonality. Internat J Math, 2004, 15: 63–85

[15]

Lin H. An Introduction to the Classification of Amenable C*-Algebras. River Edge: World Scientific, 2001

[16]

Lin H. Asymptotically unitary equivalence and classification of simple amenable C*-algebras. Invent Math, 2011, 183(2): 385–450

[17]

Robert L. The cone of functionals on the Cuntz semigroup. Math Scand, 2013, 113(2): 161–186

[18]

Rrdam M. Classification of nuclear, simple C*-algebras. In: Cuntz J, Jones V, eds. Operator Algebras and Non-Commutative Geometry, VII. Encyclopaedia Math Sci, Vol 126. Berlin: Springer-Verlag, 2002, 3–145

[19]

Sato Y, White S,Winter W. Nuclear dimension and Z-stability. Invent Math, 2015, 202(2): 893–921

[20]

Toms A S. On the classification problem for nuclear C*-algebras. Ann of Math (2), 2008, 167: 1029–1044

[21]

Winter W. Simple C*-algebras with locally finite decomposition rank. J Funct Anal, 2007, 243(2): 394–425

[22]

Winter W. Decomposition rank and Z-stability. Invent Math, 2010, 179(2): 229–301

[23]

Winter W. Nuclear dimension and Z-stability of pure C*-algebras. Invent Math, 2012, 187(2): 259–342

[24]

Winter W, Zacharias J. Completely positive maps of order zero. Münster J Math, 2009, 2: 311–324

[25]

Winter W, Zacharias J. The nuclear dimension of C*-algebras. Adv Math, 2010, 224(2): 461–498

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (287KB)

766

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/