Variational study of bifurcations in von Kármán equations

Rongrong JIN , Guangcun LU

Front. Math. China ›› 2019, Vol. 14 ›› Issue (3) : 567 -590.

PDF (379KB)
Front. Math. China ›› 2019, Vol. 14 ›› Issue (3) : 567 -590. DOI: 10.1007/s11464-019-0766-8
RESEARCH ARTICLE
RESEARCH ARTICLE

Variational study of bifurcations in von Kármán equations

Author information +
History +
PDF (379KB)

Abstract

For a class of nonlinear elliptic boundary value problems including the von Kármán equations considered by D. M. Duc, N. L. Luc, L. Q. Nam, and T. T. Tuyen [Nonlinear Anal., 2003, 55: 951{968], we give a new proof of a corresponding theorem of three solutions via Morse theory instead of topological degree theory. Several bifurcation results for this class of boundary value problems are also obtained with Morse theory methods. In addition, for the von Kármán equations studied by A. Borisovich and J. Janczewska [Abstr. Appl. Anal., 2005, 8: 889{899], we prove a few of bifurcation results under Dirichlet boundary conditions based on the second named author's recent work about parameterized splitting theorems and bifurcations for potential operators.

Keywords

Morse theory / von K_arm_an equations / bifurcation

Cite this article

Download citation ▾
Rongrong JIN, Guangcun LU. Variational study of bifurcations in von Kármán equations. Front. Math. China, 2019, 14(3): 567-590 DOI:10.1007/s11464-019-0766-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Amann H. A note on degree theory for gradient mappings. Proc Amer Math Soc, 1982, 85: 591C–595

[2]

Berger M S. On von Kármán's equations and the buckling of a thin elastic plate, I. The clamped plate. Comm Pure Appl Math, 1967, 20: 687–719

[3]

Berger M S. On the existence of equilibrium states of thin elastic shells (I). Indiana Univ Math J, 1971, 20: 591–602

[4]

Berger M S. Nonlinearity and Functional Analysis. Lectures on Nonlinear Problems in Mathematical Analysis. Pure Appl Math, Vol 74. New York: Academic Press, 1977

[5]

Berger M S, Fife P C. Von Kármán's equations and the buckling of a thin elastic plate, II. Plate with general edge conditions. Comm Pure Appl Math, 1968, 21: 227–241

[6]

Borisovich A, Janczewska J. Stable and unstable bifurcation in the von Kármán problem for a circular plate. Abstr Appl Anal, 2005, 8: 889–899

[7]

Canino A. Variational bifurcation for quasilinear elliptic equations. Calc Var Partial Differential Equations, 2003, 18: 269–286

[8]

Chang K C. Infinite Dimensional Morse Theory and Multiple Solution Problems. Progr Nonlinear Differential Equations Appl, Vol 6. Boston: Birkhauser, 1993

[9]

Chueshov I, Lasiecka I. Von Karman Evolution Equations: Well-Posedness and Long-Time Dynamics. Springer Monogr Math. New York: Springer, 2010

[10]

Ciarlet P G. Mathematical Elasticity, Vol III. Theory of Shells. Studies in Mathematics and its Applications, Vol 29. Amsterdam: North-Holland Publishing Co, 2000

[11]

Crandall M G, Rabinowitz P H. Bifurcation from simple eigenvalues. J Funct Anal, 1971, 8: 321–340

[12]

Duc D M, Luc N L, Nam L Q, Tuyen T T. On topological degree for potential operators of class (S)+: Nonlinear Anal, 2003, 55: 951–968

[13]

Fadell E R, Rabinowitz P H, Bifurcation for odd potential operators and an alternative topological index. J Funct Anal, 1977, 26: 48–67

[14]

Gazzola F, Grunau H-C, Sweers G. Polyharmonic Boundary Value Problems. Lecture Notes in Math, Vol 1991. Berlin: Springer, 2010

[15]

Janczewska J. Multiple bifurcation in the solution set of the von Kármán equations with S1-symmetries. Bull Belg Math Soc Simon Stevin, 2008, 15: 109–126

[16]

Von Karman T. Festigkeitsprobleme in Maschinenbau. In: Encyklopedie der Mathematischen Wissenschaften, 4. Leipzig: Teubner, 1910, 348–352

[17]

Lu G. Morse theory methods for a class of quasi-linear elliptic systems of higher order. arXiv: 1709.02337v3

[18]

Lu G. Parameterized splitting theorems and bifurcations for potential operators. arXiv: 1712.03479v1

[19]

Mawhin J, Willem M. Critical Point Theory and Hamiltonian Systems. Appl Math Sci, Vol 74. New York: Springer, 1989

[20]

Rabinowitz P H. A note on topological degree for potential operators. J Math Anal Appl, 1975, 51: 483–492

[21]

Rabinowitz P H. A bifurcation theorem for potential operators. J Funct Anal, 1977, 25: 412{424

[22]

Zeidler E. Nonlinear Functional Analysis and its Applications. IV: Applications to Mathematical Physics. New York: Springer, 1988

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (379KB)

556

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/