On multivariable Zassenhaus formula

Linsong WANG , Yun GAO , Naihuan JING

Front. Math. China ›› 2019, Vol. 14 ›› Issue (2) : 421 -433.

PDF (284KB)
Front. Math. China ›› 2019, Vol. 14 ›› Issue (2) : 421 -433. DOI: 10.1007/s11464-019-0760-1
RESEARCH ARTICLE
RESEARCH ARTICLE

On multivariable Zassenhaus formula

Author information +
History +
PDF (284KB)

Abstract

We give a recursive algorithm to compute the multivariable Zassenhaus formula eX1+X2+...+Xn=eX1eX2...eXnΠk=2eWk and derive ane effective recursion formula of Wk.

Keywords

Baker-Campbell-Hausdor_ formula / Zassenhaus formula

Cite this article

Download citation ▾
Linsong WANG, Yun GAO, Naihuan JING. On multivariable Zassenhaus formula. Front. Math. China, 2019, 14(2): 421-433 DOI:10.1007/s11464-019-0760-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Andrews G E. The Theory of Partitions. New York: Addison-Wesley Publishing, 1976

[2]

Bader P, Iserles A, Kropielnicka K, Singh P. Effective approximation for the semiclassical Schrödinger equation. Found Comput Math, 2014, 14: 689–720

[3]

Baker H F. Alternants and continuous groups. Proc Lond Math Soc, 1905, 3(2): 24–47

[4]

Campbell J E. On a law of combination of operators. Proc Lond Math Soc, 1898, 29: 14–32

[5]

Casas F, Murua A, Nadinic M. Effcient computation of the Zassenhaus formula. Commun Comput Phys, 2012, 183: 2386–2391

[6]

Geiser J, Tanoglu G. Operator-splitting methods via the Zassenhaus product formula. J Appl Math Comput, 2011, 217: 4557–4575

[7]

Hausdorff F. Die symbolische Exponentialformel in der Gruppentheorie. Sitzungsber Sächsischen Akad Wissenschaft Leipzig Math Nat Sci Sect Band 116, 1906, 58: 19–48

[8]

Kimura T, Explicit description of the Zassenhaus formula. Prog Theor Exp Phys, 2017, 4: 041A03

[9]

Magnus W. On the exponential solution of differential equations for a linear operator. Comm Pure Appl Math, 1954, 7: 649–673

[10]

Quesada N, Sipe J E. Effects of time ordering in quantum nonlinear optics. Phys Rev A, 2014, 90: 063840

[11]

Quesne C. Disentangling q-exponentials: a general approach. Internat J Theoret Phys, 2004, 43: 545–559

[12]

Scholz D, Weyrauch M. A note on the Zassenhaus product formula. J Math Phys, 2006, 47: 033505

[13]

Suzuki M. On the convergence of exponential operators|the Zassenhaus formula, BCH formula and systematic approximants. Comm Math Phys, 1977, 57: 193–200

[14]

Weyrauch M, Scholz D. Computing the Baker-Campbell-Hausdorff series and the Zassenhaus product. Commun Comput Phys, 2009, 180: 1558–1565

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (284KB)

1335

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/