Tensor product weight modules of Schrödinger-Virasoro algebras

Dong LIU , Xiufu ZHANG

Front. Math. China ›› 2019, Vol. 14 ›› Issue (2) : 381 -393.

PDF (280KB)
Front. Math. China ›› 2019, Vol. 14 ›› Issue (2) : 381 -393. DOI: 10.1007/s11464-019-0759-7
RESEARCH ARTICLE
RESEARCH ARTICLE

Tensor product weight modules of Schrödinger-Virasoro algebras

Author information +
History +
PDF (280KB)

Abstract

It is known that the Schrödinger-Virasoro algebras, including the original Schrödinger-Virasoro algebra and the twisted Schrödinger-Virasoro algebra, are playing important roles in mathematics and statistical physics. In this paper, we study the tensor products of weight modules over the Schrödinger-Virasoro algebras. The irreducibility criterion for the tensor products of highest weight modules with intermediate series modules over the Schrödinger-Virasoro algebra is obtained.

Keywords

Harish-Chandra module / tensor product / highest weight module / intermediate series module / Schrödinger-Virasoro algebra

Cite this article

Download citation ▾
Dong LIU, Xiufu ZHANG. Tensor product weight modules of Schrödinger-Virasoro algebras. Front. Math. China, 2019, 14(2): 381-393 DOI:10.1007/s11464-019-0759-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alday L F, Gaiotto D, Tachikawa Y. Liouville Correlation Functions from Fourdimensional Gauge Theories. Lett Math Phys, 2010, 91(2): 167–197

[2]

Arbarello E, De Concini C, Kac V G, Procesi C. Moduli spaces of curves and representation theory. Comm Math Phys, 1988, 117: 1–36

[3]

Arnal D, Pinczon G. On algebraically irreducible representations of the Lie algebra sl2: J Math Phys, 1974, 15: 350–359

[4]

Astashkevich A. On the structure of Verma modules over Virasoro and Neveu-Schwarz algebras. Comm Math Phys, 1997, 186(3): 531–562

[5]

Billig Y. Representations of the twisted Heisenberg-Virasoro algebra at level zero. Canad Math Bull, 2003, 46(4): 529–537

[6]

Chen H, Guo X, Zhao K. Tensor product weight modules over the Virasoro algebra. J Lond Math Soc (2), 2013, 88: 829–834

[7]

Chen H, Hong Y, Su Y.A family of new simple modules over the Schrödinger-Virasoro algebra. J Pure Appl Algebra, 2018, 222: 900–913

[8]

Feigin B, Fuchs D. Representations of the Virasoro algebra. In: Representation of Lie Groups and Related Topics. Adv Stud Contemp Math, Vol 7. New York: Gordon and Breach, 1990, 465–554

[9]

Gao S, Jiang C, Pei Y. Low dimensional cohomology groups of the Lie algebras W(a; b): Comm Algebra, 2011, 39(2): 397–423

[10]

Guo X, Lu R, Zhao K. Irreducible Modules over the Virasoro Algebra. Doc Math, 2011, 16: 709–721

[11]

Henkel M. Schrödinger invariance and strongly anisotropic critical systems. J Stat Phys, 1994, 75(5-6): 1023–1061

[12]

Li J, Su Y, Representations of the Schrödinger-Virasoro algebras. J Math Phys, 2008, 49: 053512

[13]

Liu D. Classification of Harish-Chandra modules over some Lie algebras related to the Virasoro algebra. J Algebra, 2016, 447: 548–559

[14]

Liu D, Jiang C. Harish-Chandra modules over the twisted Heisenberg-Virasoro algebra. J Math Phys, 2018, 49(1): 012901–13pp)

[15]

Liu D, Pei Y. Deformations on the twisted Heisenberg-Virasoro algebra. Chin Ann Math Ser B, 2019, 40(1): 111–116

[16]

Liu D, Pei Y, Zhu L. Lie bialgebra structures on the twisted Heisenberg-Virasoro algebra. J Algebra, 2012, 359: 35–48

[17]

Liu D, Zhu L. The generalized Heisenberg-Virasoro algebra. Front Math China, 2009, 4(2): 297–310

[18]

Lu R, Zhao K. Classification of irreducible weight modules over the twisted Heisenberg-Virasoro algebra. Commun Contemp Math, 2010, 12(2): 183–205

[19]

Radobolja G. Subsingular vectors in Verma modules, and tensor product modules over the twisted Heisenberg-Virasoro algebra and W(2; 2) algebra. J Math Phys, 2013, 54(7): 071701(24pp)

[20]

Radobolja G. Application of vertex algebras to the structure theory of certain representations over the Virasoro algebra. Algebr Represent Theory, 2014, 17(4): 1013–1034

[21]

Roger C, Unterberger J. The Schrödinger-Virasoro Lie group and algebra: representation theory and cohomological study. Ann Henri Poincaré, 2006, 7: 1477–1529

[22]

Shen R, Jiang C. The derivation algebra and automorphism group of the twisted Heisenberg-Virasoro Algebra. Comm Algebra, 2006, 34: 2547–2558

[23]

Tan S, Zhang X. Automorphisms and Verma modules for generalized Schrödinger-Virasoro algebras. J Algebra, 2009, 322(4): 1379–1394

[24]

Zhang H. A class of representations over the Virasoro algebra. J Algebra, 1997, 190(1): 1{10

[25]

Zhang X. Tensor product weight representations of the Neveu-Schwarz algebra. Comm Algebra, 2015, 43: 3754–3775

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (280KB)

816

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/