Upper bounds for signless Laplacian Z-spectral radius of uniform hypergraphs

Jun HE , Yanmin LIU , Junkang TIAN , Xianghu LIU

Front. Math. China ›› 2019, Vol. 14 ›› Issue (1) : 17 -24.

PDF (250KB)
Front. Math. China ›› 2019, Vol. 14 ›› Issue (1) : 17 -24. DOI: 10.1007/s11464-019-0743-2
RESEARCH ARTICLE
RESEARCH ARTICLE

Upper bounds for signless Laplacian Z-spectral radius of uniform hypergraphs

Author information +
History +
PDF (250KB)

Abstract

Let H be a k-uniform hypergraph on n vertices with degree sequence Δ=d1...dn=δ. In this paper, in terms of degree di, we give some upper bounds for the Z-spectral radius of the signless Laplacian tensor (Q(H)) of H. Some examples are given to show the eciency of these bounds.

Keywords

Hypergraph / adjacency tensor / signless Laplacian tensor / spectral radius

Cite this article

Download citation ▾
Jun HE, Yanmin LIU, Junkang TIAN, Xianghu LIU. Upper bounds for signless Laplacian Z-spectral radius of uniform hypergraphs. Front. Math. China, 2019, 14(1): 17-24 DOI:10.1007/s11464-019-0743-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bu C, Fan Y, Zhou J. Laplacian and signless Laplacian Z-eigenvalues of uniform hypergraphs. Front Math China, 2016, 11: 511–520

[2]

Chang K C, Pearson K, Zhang T. Perron-Frobenius theorem for nonnegative tensors. Commun Math Sci, 2008, 6: 507–520

[3]

Chang K C, Pearson K, Zhang T. Some variational principles for Z-eigenvalues of non-negative tensors. Linear Algebra Appl, 2013, 438: 4166–4182

[4]

Cooper J, Dutle A. Spectra of uniform hypergraphs. Linear Algebra Appl, 2012, 436: 3268–3292

[5]

Khan M, Fan Y Z. On the spectral radius of a class of non-odd-bipartite even uniform hypergraphs. Linear Algebra Appl, 2015, 480: 93–106

[6]

Lin H, Mo B, Zhou B, Weng W. Sharp bounds for ordinary and signless Laplacian spectral radii of uniform hypergraphs. Appl Math Comput, 2016, 285: 217–227

[7]

Pearson K, Zhang T. On spectral hypergraph theory of the adjacency tensor. Graphs Combin, 2014, 30: 1233–1248

[8]

Qi L. Eigenvalues of a real supersymmetric tensor. J Symbolic Comput, 2005, 40: 1302–1324

[9]

Qi L. H+-eigenvalues of Laplacian and signless Laplacian tensors. Commun Math Sci, 2014, 12: 1045–1064

[10]

Qi L, Luo Z. Tensor Analysis: Spectral Theory and Special Tensors. Philadelphia: SIAM, 2017

[11]

Song Y, Qi L. Spectral properties of positively homogeneous operators induced by higher order tensors. SIAM J Matrix Anal Appl, 2013, 34: 1581–1595

[12]

Sun L, Zheng B, Zhou J, Yan H. Some inequalities for the Hadamard product of tensors. Linear Multilinear Algebra, 2017, 66: 1199–1214

[13]

Xie J, Chang A. On the Z-eigenvalues of the adjacency tensors for uniform hypergraphs. Linear Algebra Appl, 2013, 439: 2195–2204

[14]

Xie J, Chang A. On the Z-eigenvalues of the signless Laplacian tensor for an even uniform hypergraph. Numer Linear Algebra Appl, 2013, 20: 1030–1045

[15]

Yuan X, Zhang M, Lu M. Some upper bounds on the eigenvalues of uniform hyper-graphs. Linear Algebra Appl, 2015, 484: 540–549

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (250KB)

763

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/