Growth of certain harmonic functions in an n-dimensional cone

Lei Qiao , Guantie Deng

Front. Math. China ›› 2012, Vol. 8 ›› Issue (4) : 891 -905.

PDF (133KB)
Front. Math. China ›› 2012, Vol. 8 ›› Issue (4) : 891 -905. DOI: 10.1007/s11464-012-0253-y
Research Article
RESEARCH ARTICLE

Growth of certain harmonic functions in an n-dimensional cone

Author information +
History +
PDF (133KB)

Abstract

We give the growth properties of harmonic functions at infinity in a cone, which generalize the results obtained by Siegel-Talvila.

Keywords

Growth property / harmonic function / cone

Cite this article

Download citation ▾
Lei Qiao, Guantie Deng. Growth of certain harmonic functions in an n-dimensional cone. Front. Math. China, 2012, 8(4): 891-905 DOI:10.1007/s11464-012-0253-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Armitage D. H.. Representations of harmonic functions in half-spaces. Proc Lond Math Soc, 1979, 38: 53-71

[2]

Azarin V. S.. Generalization of a theorem of Hayman on subharmonic functions in an m-dimensional cone. Amer Math Soc Trans, 1969, 80: 119-138

[3]

Gilbarg D., Trudinger N. S.. Elliptic Partial Differential Equations of Second Order, 1977, London: Springer-Verlag

[4]

Miranda C.. Partial Differential Equations of Elliptic Type, 1970, London: Springer-Verlag

[5]

Qiao L., Deng G. T.. The Riesz decomposition theorem for superharmonic functions in a cone and its application. Sci Sin Math, 2012, 42: 763-774

[6]

Siegel D., Talvila E.. Sharp growth estimates for modified Poisson integrals in a half space. Potential Anal, 2001, 15: 333-360

[7]

Stein E. M.. Singular Integrals and Differentiability Properties of Functions, 1979, Princeton: Princeton University Press

[8]

Yoshida H., Miyamoto I.. Solutions of the Dirichlet problem on a cone with continuous data. J Math Soc Japan, 1998, 50: 71-93

[9]

Zhang Y. H., Deng G. T.. Growth properties for a class of subharmonic functions in half space. Acta Math Sinica (Chin Ser), 2008, 51: 319-326

AI Summary AI Mindmap
PDF (133KB)

750

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/