Error estimates of triangular mixed finite element methods for quasilinear optimal control problems
Yanping Chen , Zuliang Lu , Ruyi Guo
Front. Math. China ›› 2012, Vol. 7 ›› Issue (3) : 397 -413.
Error estimates of triangular mixed finite element methods for quasilinear optimal control problems
The goal of this paper is to study a mixed finite element approximation of the general convex optimal control problems governed by quasilinear elliptic partial differential equations. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is approximated by piecewise constant functions. We derive a priori error estimates both for the state variables and the control variable. Finally, some numerical examples are given to demonstrate the theoretical results.
A priori error estimate / quasilinear elliptic equation / general convex optimal control problem / triangular mixed finite element method
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
Li R, Liu W. http://circus.math.pku.edu.cn/AFEPack |
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
/
| 〈 |
|
〉 |