A new CQ method for solving split feasibility problem

Hongyu Zhang , Yiju Wang

Front. Math. China ›› 2009, Vol. 5 ›› Issue (1) : 37 -46.

PDF (138KB)
Front. Math. China ›› 2009, Vol. 5 ›› Issue (1) : 37 -46. DOI: 10.1007/s11464-009-0047-z
Research Article
Research articles

A new CQ method for solving split feasibility problem

Author information +
History +
PDF (138KB)

Abstract

For the split feasibility problem, we propose a new type of solution method by introducing a new searching direction with fixed stepsize. Its global convergence is proved under a suitable condition. Preliminary numerical experiments show the efficiency of the proposed method.

Keywords

Split feasibility problem (SFP) / projection method / convergence

Cite this article

Download citation ▾
Hongyu Zhang, Yiju Wang. A new CQ method for solving split feasibility problem. Front. Math. China, 2009, 5(1): 37-46 DOI:10.1007/s11464-009-0047-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bauschke H. H., Borwein J. M. On projection algorithms for solving convex feasibility problems. SIAM Review, 1996, 38: 367-426.

[2]

Byrne C. L. Butnairu D., Censor Y., Reich S. Bregman-Legendre multidistance projection algorithms for convex feasibility and optimization. Inherently Parallel Algorithms in Feasibility and Optimization and Their Applications, 2001, Amsterdam: Elsevier, 87-100.

[3]

Byrne C. L. Iterative oblique projection onto convex sets and the split feasibility problem. Inverse Problems, 2002, 18: 441-453.

[4]

Censor Y., Elfving T. A multiprojection algorithm using Bregman projections in a product space. Numerical Algorithms, 1994, 8: 221-239.

[5]

Gafni E. M., Bertsekas D. P. Two-metric projection problems and descent methods for asymmetric variational inequality problems. Math Program, 1984, 53: 99-110.

[6]

Qu B., Xiu N. H. A note on the CQ algorithm for the split feasibility problem. Inverse Problems, 2005, 21: 1655-1665.

[7]

Rockafellar R. T. Convex Analysis, 1970, Princeton: Princeton University Press.

[8]

Yang Q. Z. The relaxed CQ algorithm solving the split feasibility problem. Inverse Problems, 2004, 20: 1261-1266.

[9]

Zarantonello E. H. Zarantonello E. H. Projections on convex sets in Hilbert space and spectral theory. Contributions to Nonlinear Functional Analysis, 1971, New York: Academic Press.

AI Summary AI Mindmap
PDF (138KB)

766

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/