Electronics, such as printed circuit board (PCB), transistor, radio frequency identification (RFID), organic light emitting diode (OLED), solar cells, electronic display, lab on a chip (LOC), sensor, actuator, and transducer etc. are playing increasingly important roles in people’s daily life. Conventional fabrication strategy towards integrated circuit (IC), requesting at least six working steps, generally consumes too much energy, material and water, and is not environmentally friendly. During the etching process, a large amount of raw materials have to be abandoned. Besides, lithography and microfabrication are typically carried out in “Cleanroom” which restricts the location of IC fabrication and leads to high production costs. As an alternative, the newly emerging ink-jet printing electronics are gradually shaping modern electronic industry and its related areas, owing to the invention of a series of conductive inks composed of polymer matrix, conductive fillers, solvents and additives. Nevertheless, the currently available methods also encounter some technical troubles due to the low electroconductivity, complex sythesis and sintering process of the inks. As an alternative, a fundamentally different strategy was recently proposed by the authors’ lab towards truly direct writing of electronics through introduction of a new class of conductive inks made of low melting point liquid metal or its alloy. The method has been named as direct writing of electronics based on alloy and metal (DREAM) ink. A series of functional circuits, sensors, electronic elements and devices can thus be easily written on various either soft or rigid substrates in a moment. With more and more technical progresses and fundamental discoveries being kept made along this category, it was found that a new area enabled by the DREAM ink electronics is emerging, which would have tremendous impacts on future energy and environmental sciences. In order to promote the research and development along this direction, the present paper is dedicated to draft a comprehensive picture on the DREAM ink technology by summarizing its most basic features and principles. Some important low melting point metal ink candidates, especially the room temperature liquid metals such as gallium and its alloy, were collected, listed and analyzed. The merits and demerits between conventional printed electronics and the new direct writing methods were comparatively evaluated. Important scientific issues and technical strategies to modify the DREAM ink were suggested and potential application areas were proposed. Further, digestions on the impacts of the new technology among energy, health, and environmental sciences were presented. Meanwhile, some practical challenges, such as security, environment-friendly feature, steady usability, package, etc. were summarized. It is expected that the DREAM ink technology will initiate a series of unconventional applications in modern society, and even enter into peoples’ daily life in the near future.
Guangdong is a province with the most electricity consumption (EC) and the fastest economic growth in China. However, there has long been a contradiction between electricity supply and demand in Guangdong and this trend may exist for a long time in the foreseeable future. Therefore, the research on the relationship between EC and economic growth of Guangdong is of very important practical significance to the formulation of relevant policy. In this paper, the econometrics method of granger causality test and co-integration test is used to analyze the relationship between EC and economic growth of Guangdong from 1978 to 2010. The results indicate that there is unidirectional causality between the economic growth and the EC, and the growth of gross domestic product (GDP) and gross industrial output value (GIOV) is the impetus to promote the growth of installedβcapacity (ICAP) and the EC. Therefore, the appropriate restraint of excessive growth of power industry will not necessarily slow down economic growth. There has been a long-term stable equilibrium relationship between the EC and the economic growth. When the GDP and GIOV grows 1 unit respectively, the EC of Guangdong province will increase 0.97 and 0.64 unit respectively. The long-term marginal utility of the EC is more than 1.
Composite adsorbents of CaCl2 and sawdust prepared by carbonization for adsorption refrigeration with NH3 as refrigerant are tested, and the effects of carbonization temperature on the sorption capacity and rate are analyzed. The results show that the amount of pores in the sawdust of the composite adsorbents carbonized, apart from the content of CaCl2, is the most dominant factor influencing the NH3 sorption on composite adsorbents. The optimum carbonization temperature is 700°C, which gives the maximal NH3 sorption capacity as high as 0.774 kg of NH3 per kg of the composite, and the specific cooling power is approximately between 338 and 869 W/kg with the cycle duration varying from 5 to 20 minutes. The present study demonstrates that the composite absorbent of CaCl2 and sawdust prepared by carbonization is more promising and competitive for adsorption refrigeration application.
This paper describes an innovative method of using a non-buoyant body to harness ocean waves. All the point absorbers are buoyant in nature and move up due to buoyancy and come down because of gravity. The point absorbers are designed to move along the waves to make the device efficient. These devices face excessive stress during the rough weather on account of the extreme motion of waves and cause the total device failure. The present study shows that using a non-buoyant body for conventional point absorber principle is much efficient and safer than any other device proposed till today. A small scale wave energy converter with non-buoyant body was designed, fabricated and tested in small scale wave maker. An electrical generator was coupled with the device to generate electrical energy from harnessed waves. The generator was electrically loaded and the generated power was measured. It was found from the experiments that the proposed device showed a significant improvement in electricity generation and safety during extreme conditions. In addition to the electricity generation, the characteristics of the device were also studied by using various wave and device parameters.
The analysis of the wind-driven self-excited induction generators (SEIGs) connected to the grid through power converters has been developed in this paper. For this analysis, a method of representing the grid power as equivalent load resistance in the steady-state equivalent circuit of SEIG has been formulated. The technique of genetic algorithm (GA) has been adopted for making the analysis of the proposed system simple and straightforward. The control of SEIG is attempted by connecting an uncontrolled diode bridge rectifier (DBR) and a line commutated inverter (LCI) between the generator terminals and three-phase utility grid. A simple control technique for maximum power point tracking (MPPT) in wind energy conversion systems (WECS), in which the firing angle of the LCI alone needs to be controlled by sensing the rotor speed of the generator has been proposed. The effectiveness of the proposed method of MPPT and method of analysis of this wind-driven SEIG-converter system connected to the grid through power converters has been demonstrated by experiments and simulation. These experimental and simulated results confirm the usefulness and successful working of the proposed system and its analysis.
The kinetics of lignocellulose hydrolysis under the conditions of high temperature and dilute acid (mass fraction 0.05%) was investigated in this paper. By studying the reducing sugar concentration versus reaction temperature (170°C–220°C) and reaction time (150–1800 s) during the hydrolysis process of five kinds of crop straw (rice, wheat, cotton, rape and corn), the shrinking core model was established, and the differential equation of the model and its analytical solution were obtained. With a numerical calculation method, the kinetic equation was estimated, and the degradation of reducing sugar obeyed first-order kinetics was obtained. The calculated results from the equations agreed well with the original experimental data. The calculation by the model showed that the reducing sugar concentration increases as the size of the particles decrease, and the uniform particles increase.
Induction motor driven by vector control method makes high performance control of torque and speed possible. The decoupling of flux and electromagnetic torque obtained by field orientation depends on the precision and the accuracy of the estimated states. Rotor asymmetries lead to perturbations of air gap flux patterns in induction machines. These perturbations in flux components affect the electromagnetic torque, as well as stator currents and voltages. This paper first investigates the control of the induction motor using an extended Kalman filter (EKF) for a direct field-oriented control. It then studies the broken rotor bars (BRBs) fault by the monitoring the rotor resistance. The hypothesis on which the detection is based is that the apparent rotor resistance of the motor will increase when a rotor bar breaks. The rotor resistance is estimated and compared with its nominal value to detect BRBs fault. The EKF estimates the rotor flux, speed and rotor resistance on line by using only measurements of the stator voltages and currents. Simulation results show the effectiveness of the proposed method in the cases of load torque perturbation and speed reversion.