RESEARCH ARTICLE

Terahertz time-domain spectroscopy of high-pressure flames

  • Jason BASSI 1 ,
  • Mark STRINGER 2 ,
  • Bob MILES 2 ,
  • Yang ZHANG , 1
Expand
  • 1. School of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester M13 9PL, United Kingdom
  • 2. School of Electronic and Electrical Engineering, The University of Leeds LS2 9JT, Leeds, United Kingdom

Received date: 08 Oct 2008

Accepted date: 08 Jan 2009

Published date: 05 Jun 2009

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Laser spectroscopy in the visible and near infrared is widely used as a diagnostic tool for combustion devices, but this approach is difficult at high pressures within a sooty flame itself. High soot concentrations render flames opaque to visible light, but they remain transparent to far-infrared or terahertz (THz) radiation. The first far-infrared absorption spectra, to the best of our knowledge, of sooty, non-premixed, ethylene high-pressure flames covering the region of 0.2-2.5 THz is presented. A specially designed high-pressure burner which is optically accessible to THz radiation has been built allowing flame transmission measurements up to pressures of 1.6 MPa. Calculations of the theoretical combustion species absorption spectra in the 0.2-3 THz range have shown that almost all the observable features arise from H2O. A few OH (1.84 and 2.51 THz), CH (2.58 THz), and NH3 (1.77 and 2.95 THz) absorption lines are also observable in principle. A large number of H2O absorption lines are observed in the ground vibrational in a laminar non-premixed, sooty flame (ethylene) at pressures up to 1.6 MPa.

Cite this article

Jason BASSI , Mark STRINGER , Bob MILES , Yang ZHANG . Terahertz time-domain spectroscopy of high-pressure flames[J]. Frontiers in Energy, 2009 , 3(2) : 123 -133 . DOI: 10.1007/s11708-009-0033-x

Acknowledgements

This work was supported by EPSRC in the frame of basic technology. Thanks go to Dr W Truscott, the project coordinator, at the University of Manchester.
1
Eisele H. High performance InP Gunn devices with 34 mW at 193 GHz. Electronics Letters, 2002, 38 (16): 923-924

DOI

2
Nahata A, Weling A S, Heinz T F. A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling. Applied Physics Letters, 1996, 69(16): 2321-2323

DOI

3
Cheville R A, Grischkowsky D. Observation of pure rotational absorption spectra in the v2 band of hot H2O in flames. Optics Letters, 1998, 23(7): 531–533

DOI

4
Cheville R A, Grischkowsky D. Far-infrared foreign and self-broadened rotational linewidths of high-temperature water vapor. Journal of the Optical Society of America B: Optical Physics, 1999, 16(2): 317-322

DOI

5
Dykaar D R, Chuang S L. Terahertz electromagnetic pulse generation, physics and applications. Journal of the Optical Society of America B: Optical Physics, 1994, B11(12): 2457-2581

6
Li M, Zhang X C, Sucha, G., . Portable THz system and its applications. SPIE Proceedings series, 1999, 3616: 126-135

7
Rønne C, Keiding S R. Low frequency spectroscopy of liquid water using THz-time domain spectroscopy. Journal of Molecular Liquids, 2002, 101(1-3): 199-218

DOI

8
Schall M, Helm H, Keiding S R. Far infrared properties of electro-optic crystals measured by THz time-domain spectroscopy. International Journal of Infrared and Millimeter Waves, 1999, 20(4): 595-604

DOI

9
Cheville R A, Grischkowsky D. Far-infrared terahertz time-domain spectroscopy of flames. Optics Letters, 1995, 20(15): 1646-1648

DOI

10
Cheville R A, Grischkowsky D. Direct observation of the v2 water rotational band in flames via THz time-domain spectroscopy. Technical Digest-European Quantum Electronics Conference, IEEE, San Francisco, CA, USA, 1998

11
Grisch F, Bouchardy P, Clauss W. CARS thermometry in high pressure rocket combustors. Aerospace Science and Technology, 2003, 7(4): 317-330

DOI

12
Joubert P, Bruet X, Bonamy J, . H2 vibrational spectral signatures in binary and ternary mixtures: Theoretical model, simulation and application to CARS thermometry in high pressure flames. Comptes Rendus de l'Academie des Sciences-Series IV: Physics, Astrophysics, 2001, 2(7): 989-1000

13
Bengtsson P-E, Alden M, Kröell S, . Vibrational CARS thermometry in sooty flames: Quantitative evaluation of C2 absorption interference. Combustion and Flame, 1990, 82(2): 199-210

DOI

14
Radi P P, Mischler B, Schlegel A, . Absolute concentration measurements using DFWM and modeling of OH and S2 in a fuel-rich H2/Air/SO2 flame. Combustion and Flame, 1999, 118(1,2): 301-307

15
Tobai J, Dreier T. Measurement of relaxation times of NH in atmospheric pressure flames using picosecond pump-probe degenerate four-wave mixing, Journal of Molecular Structure, 1999, 480-481: 307-310

DOI

16
Albert S, Petkie D T, Bettens R P A, . FASSST: A new gas-phase analytical tool. Analytical Chemistry, 1998, 70(21): 719A-727A

17
Miller I M, Maahs H G. High pressure flame system for pollution studies with results for methane-air diffusion flames. Report No. NASA-TN-D-8501 NASA, Langley Research Center, 1977

18
Burke S P, Schumann T E W. Diffusion flames. Ind Eng Chem, 1928, 20(10): 998-100

DOI

19
Park H, Cho M, Kim J, . Terahertz pulse transmission in plastic photonic crystal fibres. Physics in Medicine and Biology, 2002, 47(21): 3765-3769

DOI

20
Pickett H M, Poynter R L, Cohen E A, . Submillimeter, millimeter, and microwave spectral line catalog. Journal of Quantitative Spectroscopy and Radiative Transfer, 1998, 60(5): 883-890

DOI

21
Rothman L S, Jacquemart D, Barbe A, . The HITRAN 2004 molecular spectroscopic database, Journal of Quantitative Spectroscopy and Radiative Transfer, 2005, 96(2 Spec. Iss.): 139-204

22
Gordley L L, Marshall B T, Chu D A. Linepak: algorithms for modeling spectral transmittance and radiance, Journal of Quantitative Spectroscopy and Radiative Transfer, 1994, 52(5): 563-580

DOI

23
Ju Y, Niioka T. Computation of NOx emission of a methane-air diffusion flame in a two-dimensional laminar jet with detailed chemistry. Combustion Theory and Modelling, 1997, 1(3): 243-258

DOI

24
Kaplan C R, Patnaik G, Kailasanath K. Universal relationships in sooting methane-air diffusion flames. Combustion Science and Technology, 1998,131(1-6): 39-65

25
Kono S, Tani M, Gu P, Sakai K. Detection of up to 20 THz with a low-temperature-grown GaAs photoconductive antenna gated with 15 fs light pulses. Applied Physics Letters, 2000, 77(25): 4104-4106

DOI

26
Duvillaret L, Garet F, Roux J F, . Analytical modeling and optimization of terahertz time-domain spectroscopy experiments using photoswitches as antennas. IEEE Journal on Selected Topics in Quantum Electronics, 2001, 7(4): 615-623

DOI

Outlines

/