Terahertz time-domain spectroscopy of high-pressure flames

Jason BASSI, Mark STRINGER, Bob MILES, Yang ZHANG

PDF(563 KB)
PDF(563 KB)
Front. Energy ›› 2009, Vol. 3 ›› Issue (2) : 123-133. DOI: 10.1007/s11708-009-0033-x
RESEARCH ARTICLE
RESEARCH ARTICLE

Terahertz time-domain spectroscopy of high-pressure flames

Author information +
History +

Abstract

Laser spectroscopy in the visible and near infrared is widely used as a diagnostic tool for combustion devices, but this approach is difficult at high pressures within a sooty flame itself. High soot concentrations render flames opaque to visible light, but they remain transparent to far-infrared or terahertz (THz) radiation. The first far-infrared absorption spectra, to the best of our knowledge, of sooty, non-premixed, ethylene high-pressure flames covering the region of 0.2-2.5 THz is presented. A specially designed high-pressure burner which is optically accessible to THz radiation has been built allowing flame transmission measurements up to pressures of 1.6 MPa. Calculations of the theoretical combustion species absorption spectra in the 0.2-3 THz range have shown that almost all the observable features arise from H2O. A few OH (1.84 and 2.51 THz), CH (2.58 THz), and NH3 (1.77 and 2.95 THz) absorption lines are also observable in principle. A large number of H2O absorption lines are observed in the ground vibrational in a laminar non-premixed, sooty flame (ethylene) at pressures up to 1.6 MPa.

Keywords

terahertz time-domain spectroscopy / high-pressure flames / H2O absorption lines

Cite this article

Download citation ▾
Jason BASSI, Mark STRINGER, Bob MILES, Yang ZHANG. Terahertz time-domain spectroscopy of high-pressure flames. Front Energ Power Eng Chin, 2009, 3(2): 123‒133 https://doi.org/10.1007/s11708-009-0033-x

References

[1]
Eisele H. High performance InP Gunn devices with 34 mW at 193 GHz. Electronics Letters, 2002, 38 (16): 923-924
CrossRef Google scholar
[2]
Nahata A, Weling A S, Heinz T F. A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling. Applied Physics Letters, 1996, 69(16): 2321-2323
CrossRef Google scholar
[3]
Cheville R A, Grischkowsky D. Observation of pure rotational absorption spectra in the v2 band of hot H2O in flames. Optics Letters, 1998, 23(7): 531–533
CrossRef Google scholar
[4]
Cheville R A, Grischkowsky D. Far-infrared foreign and self-broadened rotational linewidths of high-temperature water vapor. Journal of the Optical Society of America B: Optical Physics, 1999, 16(2): 317-322
CrossRef Google scholar
[5]
Dykaar D R, Chuang S L. Terahertz electromagnetic pulse generation, physics and applications. Journal of the Optical Society of America B: Optical Physics, 1994, B11(12): 2457-2581
[6]
Li M, Zhang X C, Sucha, G., . Portable THz system and its applications. SPIE Proceedings series, 1999, 3616: 126-135
[7]
Rønne C, Keiding S R. Low frequency spectroscopy of liquid water using THz-time domain spectroscopy. Journal of Molecular Liquids, 2002, 101(1-3): 199-218
CrossRef Google scholar
[8]
Schall M, Helm H, Keiding S R. Far infrared properties of electro-optic crystals measured by THz time-domain spectroscopy. International Journal of Infrared and Millimeter Waves, 1999, 20(4): 595-604
CrossRef Google scholar
[9]
Cheville R A, Grischkowsky D. Far-infrared terahertz time-domain spectroscopy of flames. Optics Letters, 1995, 20(15): 1646-1648
CrossRef Google scholar
[10]
Cheville R A, Grischkowsky D. Direct observation of the v2 water rotational band in flames via THz time-domain spectroscopy. Technical Digest-European Quantum Electronics Conference, IEEE, San Francisco, CA, USA, 1998
[11]
Grisch F, Bouchardy P, Clauss W. CARS thermometry in high pressure rocket combustors. Aerospace Science and Technology, 2003, 7(4): 317-330
CrossRef Google scholar
[12]
Joubert P, Bruet X, Bonamy J, . H2 vibrational spectral signatures in binary and ternary mixtures: Theoretical model, simulation and application to CARS thermometry in high pressure flames. Comptes Rendus de l'Academie des Sciences-Series IV: Physics, Astrophysics, 2001, 2(7): 989-1000
[13]
Bengtsson P-E, Alden M, Kröell S, . Vibrational CARS thermometry in sooty flames: Quantitative evaluation of C2 absorption interference. Combustion and Flame, 1990, 82(2): 199-210
CrossRef Google scholar
[14]
Radi P P, Mischler B, Schlegel A, . Absolute concentration measurements using DFWM and modeling of OH and S2 in a fuel-rich H2/Air/SO2 flame. Combustion and Flame, 1999, 118(1,2): 301-307
[15]
Tobai J, Dreier T. Measurement of relaxation times of NH in atmospheric pressure flames using picosecond pump-probe degenerate four-wave mixing, Journal of Molecular Structure, 1999, 480-481: 307-310
CrossRef Google scholar
[16]
Albert S, Petkie D T, Bettens R P A, . FASSST: A new gas-phase analytical tool. Analytical Chemistry, 1998, 70(21): 719A-727A
[17]
Miller I M, Maahs H G. High pressure flame system for pollution studies with results for methane-air diffusion flames. Report No. NASA-TN-D-8501 NASA, Langley Research Center, 1977
[18]
Burke S P, Schumann T E W. Diffusion flames. Ind Eng Chem, 1928, 20(10): 998-100
CrossRef Google scholar
[19]
Park H, Cho M, Kim J, . Terahertz pulse transmission in plastic photonic crystal fibres. Physics in Medicine and Biology, 2002, 47(21): 3765-3769
CrossRef Google scholar
[20]
Pickett H M, Poynter R L, Cohen E A, . Submillimeter, millimeter, and microwave spectral line catalog. Journal of Quantitative Spectroscopy and Radiative Transfer, 1998, 60(5): 883-890
CrossRef Google scholar
[21]
Rothman L S, Jacquemart D, Barbe A, . The HITRAN 2004 molecular spectroscopic database, Journal of Quantitative Spectroscopy and Radiative Transfer, 2005, 96(2 Spec. Iss.): 139-204
[22]
Gordley L L, Marshall B T, Chu D A. Linepak: algorithms for modeling spectral transmittance and radiance, Journal of Quantitative Spectroscopy and Radiative Transfer, 1994, 52(5): 563-580
CrossRef Google scholar
[23]
Ju Y, Niioka T. Computation of NOx emission of a methane-air diffusion flame in a two-dimensional laminar jet with detailed chemistry. Combustion Theory and Modelling, 1997, 1(3): 243-258
CrossRef Google scholar
[24]
Kaplan C R, Patnaik G, Kailasanath K. Universal relationships in sooting methane-air diffusion flames. Combustion Science and Technology, 1998,131(1-6): 39-65
[25]
Kono S, Tani M, Gu P, Sakai K. Detection of up to 20 THz with a low-temperature-grown GaAs photoconductive antenna gated with 15 fs light pulses. Applied Physics Letters, 2000, 77(25): 4104-4106
CrossRef Google scholar
[26]
Duvillaret L, Garet F, Roux J F, . Analytical modeling and optimization of terahertz time-domain spectroscopy experiments using photoswitches as antennas. IEEE Journal on Selected Topics in Quantum Electronics, 2001, 7(4): 615-623
CrossRef Google scholar

Acknowledgements

This work was supported by EPSRC in the frame of basic technology. Thanks go to Dr W Truscott, the project coordinator, at the University of Manchester.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(563 KB)

Accesses

Citations

Detail

Sections
Recommended

/