REVIEW ARTICLE

Radiative properties of materials with surface scattering or volume scattering: A review

  • Qunzhi ZHU , 1 ,
  • Hyunjin LEE 2 ,
  • Zhuomin M. HANG 3
Expand
  • 1. School of Energy Sources and Environment Engineering, Shanghai University of Electric Power, Shanghai 200090, China
  • 2. Samsung Corning Precision Glass Co., theRepublic of Korea
  • 3. George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA

Received date: 02 Sep 2008

Accepted date: 18 Nov 2008

Published date: 05 Mar 2009

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Radiative properties of rough surfaces, particulate media and porous materials are important in thermal engineerit transfer between surfaces and volume elements in participating media, as well as for accurate radiometric temperature measurements. In this paper, recent research on scattering of thermal radiation by rough surfaces, fibrous insulation, soot, aerogel, biological materials, and polytetrafluoroethylene (PTFE) was reviewed. Both theoretical modeling and experimental investigation are discussed. Rigorous solutions and approximation methods for surface scattering and volume scattering are described. The approach of using measured surface roughness statistics in Monte Carlo simulations to predict radiative properties of rough surfaces is emphasized. The effects of various parameters on the radiative properties of particulate media and porous materials are summarized.

Cite this article

Qunzhi ZHU , Hyunjin LEE , Zhuomin M. HANG . Radiative properties of materials with surface scattering or volume scattering: A review[J]. Frontiers in Energy, 2009 , 3(1) : 60 -79 . DOI: 10.1007/s11708-009-0011-3

Acknowledgements

Q. Zhu wants to acknowledge supports from the National Natural Science Foundation of China (Grant No. 50606022) and Shanghai Pujiang Program (Contract No. 06PJ14046). Z. M. Zhang thanks the support from the US Department of Energy (DE-FG02-06ER46343) and the US National Science Foundation (CBET-0500113, 0828701).
1
ModestM F. Radiative Heat Transfer, 2nd edition. San Diego CA: Academic Press, 2003

2
ZhangZ M. Surface temperature measurement using optical techniques. In: Tien C Led. Annual Review of Heat Transfer, New York: Begell House, 2000, 51-411

3
TimansP J. Thermal radiative properties of semiconductors. Advances in Rapid Thermal and Integrated Processing (Edited by Roozeboom F), Dordrecht, Netherlands: Academic Publishers, 1996, 35-102

4
WenC D,MudawarI. Emissivity characteristics of roughened aluminum alloy surfaces and assessment of multispectral radiation thermometry (MRT) emissivity models. International Journal of Heat and Mass Transfer, 2004, 47(17, 18): 3591-3605

5
BeckmannP,SpizzichinoA. The Scattering of Electromagnetic Waves from Rough Surfaces. Norwood, MA: Artech House, 1987

6
SaillardM,SentenacA. Rigorous solutions for electromagnetic scattering from rough surfaces. Waves Random Media, 2001, 11(3): R103-R137

DOI

7
WarnickK F,ChewW C. Numerical simulation methods for rough surface scattering. Waves Random Media, 2001, 11(1): R1-R30

DOI

8
MacaskillC. Geometric optics and enhanced backscatter from very rough surfaces. Journal of the Optical Society of America A, 1991, 8(1): 88-96

DOI

9
TangK,BuckiusR O. A statistical model of wave scattering from random rough surfaces. International Journal of Heat and Mass Transfer, 2001, 44(21): 4059-4073

DOI

10
ZhouY H,ShenY J,ZhangZ M, . A Monte Carlo model for predicting the effective emissivity of the silicon wafer in rapid thermal processing furnaces. International Journal of Heat and Mass Transfer, 2002, 45(9): 1945-1949

DOI

11
ProkhorovA V,HanssenL M. Algorithmic model of microfacet BRDF for Monte Carlo calculation of optical radiation transfer. SPIE, 2003, 5192: 141-157

DOI

12
ZhuQ Z,ZhangZ M. Anisotropic slope distribution and bidirectional reflectance of a rough silicon surface. Journal of Heat Transfer, 2004, 126(6): 985-993

DOI

13
LeeH J,LeeB J,ZhangZ M. Modeling the radiative properties of semitransparent wafers with rough surfaces and thin-film coatings. Journal of Quantitative Spectroscopy & Radiative Transfer, 2005, 93(1-3): 185-194

DOI

14
GuérinC A. Scattering on rough surfaces with alpha-stable non-Gaussian height distributions. Waves Random Media, 2002, 12(3): 293-306

DOI

15
ViskantaR,MengüçM P. Radiative transfer in dispersed media. Applied Mechanics Reviews, 1989, 42(9): 241-259

16
TongT W,SwathiP S. Examination of the radiative properties of coated silica fibers. Journal of Thermal Insulation, 1987, 11: 7-31

17
BaillisD,SacaduraJ F. Thermal radiation properties of dispersed media: theoretical prediction and experimental characterization. Journal of Quantitative Spectroscopy & Radiative Transfer, 2000, 67(5): 327-363

DOI

18
ViskantaR,MengüçM P. Radiation heat transfer in combustion systems. Progress in Energy and Combustion Science, 1987, 13(2): 97-160

DOI

19
FrickeJ,EmmerlingA. Aerogels. Journal of the American Ceramic Society, 1992, 75(8): 2027-2036

DOI

20
WenC D,MudawarI. Emissivity characteristics of polished aluminum alloy surfaces and assessment of multispectral radiation thermometry (MRT) emissivity models. International Journal of Heat and Mass Transfer, 2005, 48(7): 1316-1329

DOI

21
SchietingerC. Wafer temperature measurement in RTP. In: Roozeboom F, ed. Advances in Rapid Thermal and Integrated Processing, Dordrecht, Netherlands: Academic Publishers, 1996, 103-123

22
SiegelR,HowellJ R. Thermal Radiation Heat Transfer. 4th ed. New York: Taylor & Francis, 2002

23
ZhangZ M. Nano/Microscale Heat Transfer. New York: McGraw-Hill, 2007

24
PriestR G,GermerT A. Polarimetric BRDF in the microfacet model: theory and measurements. Proceedings of the Meeting of the Military Sensing Symposia Specialty Group on Passive Sensors, 2000, 1: 169-181

25
FengW W,WeiQ N,WangS M, . Numerical simulation of polarized Bidirectional Reflectance Distribution Function (BRDF) based on micro-facet model. SPIE, 2008, 6622: 66220A

DOI

26
OgilvyJ A. Theory of Wave Scattering from Random Rough Surfaces. New York: Adam Hilger, 1991

27
ShenY J,ZhangZ M,TsaiB K, . Bidirectional reflectance distribution function of rough silicon wafers. International Journal of Thermophysics, 2001, 22(4): 1311-1326

DOI

28
ZhangZ M,FuC J,ZhuQ Z. Optical and thermal radiative properties of semiconductors related to micro/nanotechnology. Advances in Heat Transfer, 2003, 37: 179-296

29
StoverJ. Optical Scattering: Measurement and Analysis. Bellingham, WA: SPIE Press, 1995

30
ZhuQ Z,ZhangZ M. Correlation of angle-resolved light scattering with the microfacet orientation of rough silicon surfaces. Optical Engineering, 2005, 44(7): 073601

DOI

31
LeeH J,ChenY B,ZhangZ M. Directional radiative properties of anisotropic rough silicon and gold surfaces. International Journal of Heat and Mass Transfer, 2006, 49(23-24): 4482-4495

32
ResnikD,VrtacnikD,AmonS. Morphological study of {311} crystal planes anisotropically etched in (100) silicon: role of etchants and etching parameters. Journal of Micromechanics and Microengineering, 2000, 10(3): 430-439

DOI

33
O'DonnellK A,MendezE R. Experimental study of scattering from characterized random surfaces. Journal of the Optical Society of America A, 1987, 4(7): 1194-1205

DOI

34
Nieto-VesperinasM,Soto-CrespoJ M. Monte Carlo simulations for scattering of electromagnetic waves from perfectly conductive random rough surfaces. Optics Letters, 1987, 12(12): 979-981

DOI

35
MaradudinA A,MichelT,McGurnA R, . Enhanced backscattering of light from a random grating. Annals of Physics, 1990, 203(2): 255-307

DOI

36
Sanchez-GilJ A,Nieto-VesperinasM. Light scattering from random rough dielectric surfaces. Journal of the Optical Society of America A, 1991, 8(8): 1270-1286

DOI

37
LuJ Q,MaradudinA A,MichelT. Enhanced backscattering from a rough dielectric film on a reflecting substrate. Journal of the Optical Society of America B, 1991, 8(2): 311-318

DOI

38
GuZ H,LuJ Q.MaradudinA A. Enhanced backscattering from a rough dielectric film on a glass substrate. Journal of the Optical Society of America A, 1993, 10(8): 1753-1764

DOI

39
FuK,HsuP F. Modeling the radiative properties microscale random roughness surfaces. Journal of Heat Transfer, 2007, 129(1): 71-78

DOI

40
LettieriT R,MarxE,SongJ F, . Light scattering from glossy coatings on paper. Applied Optics, 1991, 30(30): 4439-4447

41
TangK,KawkaP A,BuckiusR O. Geometric optics applied to rough surfaces coated with an absorbing thin film. Journal of Thermophysics and Heat Transfer, 1999, 13(2): 169-176

DOI

42
IcartI,ArquesD. Simulation of the optical behavior of rough identical multilayer. SPIE, 2000, 4100: 84-95

DOI

43
ElfouhailyT M,GuérinC A. A critical survey of approximate scattering wave theories from random rough surfaces. Waves Random Media, 2004, 14(4): R1-R40

DOI

44
ThorsosE I. The validity of the Kirchhoff approximation for rough surface scattering using a Gaussian roughness spectrum. Journal of the Acoustical Society of America, 1988, 83(1): 78-92

DOI

45
Soto-CrespoJ M,Nieto-VesperinasM,FribergA T. Scattering from slightly rough random surfaces-a detailed study on the validity of the small perturbation method. Journal of the Optical Society of America A, 1990, 7(7): 1185-1201

DOI

46
TangK,DimennaR A,BuckiusR O. Regions of validity of the geometric optics approximation for angular scattering from very rough surfaces. International Journal of Heat and Mass Transfer, 1997, 40(1): 49-59

DOI

47
FuK,HsuP F. New regime map of the geometric optics approximation for scattering from random rough surfaces. Journal of Quantitative Spectroscopy & Radiative Transfer, 2008, 109(2): 180-188

DOI

48
ZhouY H,ZhangZ M. Radiative properties of semitransparent silicon wafers with rough surfaces. Journal of Heat Transfer, 2003, 125(3): 462-470

DOI

49
ZhuQ Z,LeeH J,ZhangZ M. The validity of using thin-film optics in modeling the bidirectional reflectance of coated rough surfaces. Journal of Thermophysics and Heat Transfer, 2005, 19: 548-555

DOI

50
LeeH J,ZhangZ M. Measurement and modeling of the bidirectional reflectance of SiO2 coated Si surfaces. International Journal of Thermophysics, 2006, 27(3): 820-839

DOI

51
BruceN C. Scattering of light from surfaces with one-dimensional structure calculated by the ray-tracing method. Journal of the Optical Society of America A, 1997, 14(8): 1850-1858

DOI

52
LeeH J,ZhangZ M. Applicability of phase ray-tracing method for light scattering from rough surfaces. Journal of Thermophysics and Heat Transfer, 2007, 21: 330-336

DOI

53
BarnesP Y,EarlyE A,ParrA C. Spectral Reflectance, NIST Special Publication250-48. Washington, DC: U.S. Government Printing Office, 1998

54
ShenY J,ZhuQ Z,ZhangZ M. A scatterometer for measuring the bidirectional reflectance and transmittance of semiconductor wafers with rough surfaces. Review of Scientific Instruments, 2003, 74(11): 4885-4892

DOI

55
DaiJ M,QiC,SunX G. Comparison and research for several Bi-directional reflectance distribution function (BRDF) measuring. SPIE, 2003, 5280: 655-660

DOI

56
ZhaoZ Y,QiC,DaiJ M. Design of multi-spectrum BRDF measurement system. Chinese Optics Letters, 2007, 5(3): 168-171

57
FengW W,WeiQ N. A scatterometer for measuring the polarized bidirectional reflectance distribution function of painted surfaces in the infrared. Infrared Physics & Technology, 2008, 51: 559-563

DOI

58
LeeH J,BrysonA C,ZhangZ M. Measurement and modeling of the emittance of silicon wafers with anisotropic roughness. International Journal of Thermophysics, 2007, 28(3): 918-933

DOI

59
GhmariF,SassiI,SifaouiM S. Directional hemispherical radiative properties of random dielectric rough surfaces. Waves Random Complex, 2005, 15(4): 469-486

DOI

60
Van de HulstH C. Light Scattering by Small Particles. New York: Dover, 1981 (New York: Wiley, 1957)

61
KerkerM. The Scattering of Light and Other Electromagnetic Radiation. New York: Academic Press, 1969

62
BohrenC F,HuffmanD R. Absorption and Scattering of Light by Small Particles. New York: Wiley, 1983

63
SchusterA. Radiation through foggy atmospheres. The Astrophysical Journal, 1905, 21(1): 1-22

DOI

64
KubelkaP,MunkF. An article on optics of paint layers. Z Tech Phys, 1931, 12(11a): 593-601

65
ChandrasekharS. Radiative Transfer. New York: Dover, 1960

66
IshimaruA. Wave Propagation and Scattering in Random Media. New York: IEEE Press, 1997 (Originally published in 1978 by Academic Press, Vols. 1&2)

67
MishchenkoM I. Vector radiative transfer equation for arbitrarily shaped and arbitrarily oriented particles: a microphysical derivation from statistical electromagnetics. Applied Optics, 2002, 41(33): 7114-7134

DOI

68
TienC L,DrolenB L. Thermal radiation in particulate media with dependent and independent scattering. In: Chawla T Ced. Annual Review of Numerical Fluid Mechanics and Heat Transfer, New York: Hemisphere Publishing Corp, 1987, 1-32

69
HapkeB. Bidirectional reflectance spectroscopy - I. Theory. Journal of Geophysical Research, 1981, 86(B4): 3039-3054

DOI

70
KokhanovskyA A,SokoletskyL G. Reflection of light from semi-infinite absorbing turbid media. Part 2: Plane albedo and reflection function. Color Research and Application, 2006, 31(6): 498-509

DOI

71
MishchenkoM I,DlugachJ M,YanovitskijE G, . Bidirectional reflectance of flat, optically thick particulate layers: an efficient radiative transfer solution and applications to snow and soil surfaces. Journal of Quantitative Spectroscopy & Radiative Transfer, 1999, 63(4): 409-432

DOI

72
WilliamsM M R. The searchlight problem in radiative transfer with internal reflection. Journal of Physics A: Mathematical and Theoretical, 2007, 40(24): 6407-6425

DOI

73
MuellerD W, CrosbieA L. Three-dimensional radiative transfer in an anisotropically scattering, plane-parallel medium: generalized reflection and transmission functions. Journal of Quantitative Spectroscopy & Radiative Transfer, 2002, 75(6): 661-721

DOI

74
MudgettP S,RichardsL W. Multiple scattering calculations for technology. Applied Optics, 1971, 10(7): 1485-1502

DOI

75
StamnesK,TsayS C,WiscombeW, et al. Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. Applied Optics, 1988, 27(12): 2502-2509

76
FivelanW A. Three-dimensional radiative heat-transfer solutions by the discrete-ordinates method. Journal of Thermophysics and Heat Transfer, 1988, 2(4): 309-316

DOI

77
EvansK E. Two-dimensional radiative transfer in cloudy atmospheres: the spherical harmonic spatial grid method. Journal of the Atmospheric Sciences, 1993, 50(18): 3111-3124

DOI

78
KisselevV B,RobertiL ,PeronaG. An application of the finite element method to the solution of the radiative transfer equation. Journal of Quantitative Spectroscopy & Radiative Transfer, 1994, 51(5-6): 545-663

79
LiuL H. Finite element simulation of radiative heat transfer in absorbing and scattering media. Journal of Thermophysics and Heat Transfer, 2004, 18(3): 555-557

DOI

80
AnW,RuanL M,QiH, . Finite element method for radiative heat transfer in absorbing and anisotropic scattering media. Journal of Quantitative Spectroscopy & Radiative Transfer, 2005, 96(3-4): 409-422

DOI

81
ChaiJ,ParthasarathyG,PatankarS, . A finite-volume radiation heat transfer procedure for irregular geometries. Journal of Thermophysics and Heat Transfer, 1994, 9(3): 410-415

DOI

82
HowellJ R. The Monte Carlo method in radiative heat transfer. Journal of Heat Transfer, 1998, 120(3): 547-560

DOI

83
GjerstadK I,StamnesJ J,HamreB, . Monte Carlo and discrete-ordinate simulations of irradiances in the coupled atmosphere-ocean system. Applied Optics, 2003, 42(15): 2609-2622

DOI

84
ModestM F. Backward Monte Carlo simulations in radiative heat transfer. Journal of Heat Transfer, 2003, 125(1): 57-62

DOI

85
LuX,HsuP F. Reverse Monte Carlo simulations of ultra-short light pulse propagation within three-dimensional nonhomogeneous media. Journal of Thermophysics and Heat Transfer, 2005, 19(3): 353-359

DOI

86
ChengQ,ZhouH C. The DRESOR method for a collimated irradiation on an isotropically scattering layer. Journal of Heat Transfer, 2007, 129(5): 634-645

DOI

87
ZhouH C,ChenD L,ChengQ. A new way to calculate radiative intensity and solve radiative transfer equation through using the Monte Carlo method. Journal of Quantitative Spectroscopy & Radiative Transfer, 2004, 83(3-4): 459-481

DOI

88
ZhaoJ M,LiuL H. Discontinuous spectral element method for solving radiative heat transfer in multidimensional semitransparent media. Journal of Quantitative Spectroscopy & Radiative Transfer, 2007, 107(1): 1-16

DOI

89
TanH P,LallemandM. Transient radiative-conductive heat transfer in flat glasses submitted to temperature, flux and mixed boundary conditions. International Journal of Heat and Mass Transfer, 1989, 32(5): 795-810.

DOI

90
TanH P,XiaX L,LiuL H, . Numerical calculation for Infrared Radiative Characteristics and Transfer- Computational Thermal Radiation. Harbin: Press of the Harbin Institute of Technology, 2006 (in Chinese)

91
LiuL H,ZhaoJ M,TanH P. Finite/Spectral Element Methods for Solving Radiative Transfer Equation. Beijing: Science Press, 2008 (in Chinese)

92
MishchenkoM I,HovenierJ W,TravisL D, eds. Light Scattering by Nonspherical Particles. San Diego: Academic Press, 2000

93
TsangL,KongJ A,DingK H. Scattering of Electromagnetic Waves-Theories and Applications, New York: Wiley, 2000

DOI

94
KahnertF M. Numerical method in electromagnetic scattering theory. Journal of Quantitative Spectroscopy & Radiative Transfer, 2003, 79-80(7): 775-824

DOI

95
TafloveA,HagnessS C. Computational Electrodynamics: the Finite-Difference Time-Domain method. 3rd ed. Boston MA: Artech House, 2005

96
DraineB T,FlatauP J. Discrete-dipole approximation for scattering calculations. Journal of the Optical Society of America A, 1994, 11(4): 1491-1499

DOI

97
WangK Y,TienC L. Radiative heat transfer through opacified fibers and powders. Journal of Quantitative Spectroscopy and Radiative Transfer, 1983, 30(3): 213-223

DOI

98
LeeS C. Effect of fiber orientation on thermal radiation in fibrous media. International Journal of Heat and Mass Transfer, 1989, 32(2): 311-319

DOI

99
DombrovskyL A. Quartz-fiber thermal insulation: infrared radiative properties and calculation of radiative-conductive heat transfer. Journal of Heat Transfer, 1996, 118(2): 408-414

DOI

100
LeeS C. Radiative transfer through a fibrous medium allowance for fiber orientation. Journal of Quantitative Spectroscopy and Radiative Transfer, 1986, 36(3): 253-263

DOI

101
YamadaJ,KurosakiY. Radiative characteristics of fibers with a large size parameter. International Journal of Heat and Mass Transfer, 2000, 43(6): 981-991

DOI

102
CoquardR,BaillisD. Radiative properties of dense fibrous medium containing fibers in the geometric limit. Journal of Heat Transfer, 2006, 128(10): 1022-1030

DOI

103
TianW,HuangW,ChiuW K S. Thermal radiative properties of a semitransparent fiber coated with a thin absorbing film. Journal of Heat Transfer, 2007, 129(6): 763-767

DOI

104
LeeS C. Effective propagation constant of fibrous media containing parallel fibers in the dependent scattering regime. Journal of Heat Transfer, 1992, 114(2): 473-478

DOI

105
LeeS C. Dependent vs independent scattering in fibrous composites containing parallel fibers. Journal of Thermophysics and Heat Transfer, 1994, 8(4): 641-646

DOI

106
LeeS C. Scattering by a dense layer of infinite cylinders at normal incidence. Journal of the Optical Society of America, 2008, 25(5): 1022-1029

DOI

107
LeeS C. Scattering by a dense finite layer of infinite cylinders at oblique incidence. Journal of the Optical Society of America A, 2008, 25(10): 2489-2498

DOI

108
WangK Y,KumarS,TienC L. Radiative transfer in thermal insulations of hollow and coated fibers. Journal of Thermophysics and Heat Transfer, 1987, (1): 289-295

DOI

109
YangL L,HeX D,HeF. ITO coated quartz fibers for heat radiative applications. Materials Letters, 2008, 62(30): 4539-4541

DOI

110
YanChanghai,MengSonghe,ChenGuiqing, . Research on nanocomposite material coating on fibrous insulations. Materials Review, 2006, 20(4): 33-135 (in Chinese)

111
PapiniM. Influence of the orientation of polypropylene fibers on their radiative properties. Applied Spectroscopy, 1994, 48(4): 472-476

DOI

112
YamadaJ. Radiative properties of fibers with non-circular cross sectional shapes. Journal of Quantitative Spectroscopy & Radiative Transfer, 2002, 73(2-5): 261-272

DOI

113
ManickavasagamS,MengüçM P. Scattering matrix elements of fractal-like soot agglomerates. Applied Optics, 1997, 36(6): 1337-1351

DOI

114
ZhuJinyu,ChoiM Y,MulhollandG W. Measurement of visible and near-IR optical properties of soot produced from laminar flames. Proceedings of the Combustion Institute, 2002, 29: 2367-2374

DOI

115
LeiC X,LiF L,LiuC D, . Light scattering properties of soot aggregates. The Journal of Light Scattering, 2006, 18(3): 261-266

116
HuangC J,LiuY F,WuZ S. Numerical calculation of optical cross section and scattering matrix for soot aggregation particle. Acta Physica Sinica, 2007, 56(7): 4068-4074 (in Chinese)

117
LiuL,MishchenkoM I,ArnottW P. A study of radiative properties of fractal soot aggregates using the superposition T-matrix method. Journal of Quantitative Spectroscopy & Radiative Transfer, 2008, 109(15): 2656-2663

DOI

118
DobbinsR A,MegaridisM. Absorption and scattering of light by polydisperse aggregates. Applied Optics, 1991, 30(33): 4747-4754

119
LiuL,MishchenkoM I. Scattering and radiative properties of complex soot and soot-containing aggregate particles. Journal of Quantitative Spectroscopy & Radiative Transfer, 2007, 106(1-3): 262-273

DOI

120
MackowskiD W. A simplified model to predict the effects of aggregation on the absorption properties of soot particles. Journal of Quantitative Spectroscopy & Radiative Transfer, 2006, 100(1-3): 237-249

121
EymetV,BrasilA M,HaM E. Numerical investigation of the effect of soot aggregation on the radiative properties in the infrared region and radiative heat transfer. Journal of Quantitative Spectroscopy & Radiative Transfer, 2002, 74(6): 697-718

DOI

122
YonJ,ClaudeR,ThierryG. Extension of RDG-FA for scattering prediction of aggregates of soot taking into account interactions of large monomers. Particle & Particle Systems Characterization, 2008, 25(1): 54-67

DOI

123
FariasT L,KoyluU O,CarvalhoM G. Range of validity of the Rayleigh-Debye-Gans theory for optics of fractal aggregates. Applied Optics, 1996, 35(33): 6560-6567

DOI

124
MackowskiD W. Electrostatics analysis of radiative absorption by sphere clusters in the Rayleigh limit: application to soot particles. Applied Optics, 1995, 34(18): 3535

DOI

125
LeeS C,TienC L. Effect of soot shape on soot radiation. Journal of Quantitative Spectroscopy & Radiative Transfer, 1983, 29(3): 259-265

DOI

126
NilssonT,SundenB. Thermal radiative coefficients of cylindrically and spherically shaped soot particles and soot agglomerates. Heat and Mass Transfer, 2004, 41(1): 12-22

DOI

127
HermannG,IdenR,MielkeM, . On the way to commercial production of silica aerogel. Journal of Non-Crystalline Solids, 1995, 186: 380-387

DOI

128
ZhouB,ShenJ,WuY H, . Hydrophobic silica aerogels derived from polyethoxydisiloxane and perfluoroalkylsilane. Materials Science and Engineering C, 2007, 27(5–8): 1291-1294

DOI

129
ShenJ,ZhangZ H,WuG M, . Preparation and characterization of silica aerogels derived from ambient pressureJournal of Materials Science and Technology, 2006, 22(6): 798-802

130
ReimM,BeckA,KornerW, . Highly insulating aerogel glazing for solar energy usage. Solar Energy, 2002, 72(1): 21-29

DOI

131
WangP,KornerW,EmmerlingA, . Optical investigations of silica aerogels. Journal of Non-Crystalline Solids, 1992, 145(1-3): 141-145

DOI

132
BeckA,KornerW,FrickeJ. Optical investigations of granular aerogel fills. Journal of Physics D: Applied Physics, 1994, 27(1): 13-18

DOI

133
ZhuQunzhi,DuanRui,LiYongguang. Measurements of solar optical properties of transparent insulation materials. Proceedings of the ASME/JSME Thermal Engineering Summer Heat Transfer Conference, Vancouver, Canada, 2007, 919-924

134
WangP,BeckA,KornerW, . Density and refractive index of silica aerogels after low- and high-temperature supercritical drying and thermal treatmen. Journal of Physics D: Applied Physics, 1994, 27(2): 414-418

DOI

135
PajonkG M. Some applications of silica aerogels. Colloid and Polymer Science, 2003, 281(7): 637-651

DOI

136
IshimaruA. Diffusion of light in turbid material. Applied Optics, 1989, 28(12): 2210-2215

137
ContiniD,MartelliF,ZaccantiG. Photon migration through a turbid slab described by a model based on diffusion approximation I: Theory. Applied Optics, 1997, 36(19): 4587-4599

DOI

138
ChenB,StamnesK,StamnesJ J. Validity of the diffusion approximation in bio-optical imaging. Applied Optics, 2001, 40(34): 6356-6366

DOI

139
PrahlS A,van GemertM J C,WelchA J. Determining the optical properties of turbid media by using the adding-doubling method. Applied Optics, 1993, 32(4): 559-568

140
MarchesiniR,BertoniA,AndreolaS, . Extinction and absorption coefficients and scattering phase functions of human tissues in vitro. Applied Optics, 1989, 28(12): 2318-2324

141
PickeringJ W,PrahlS A,van WieringenN, . Double-integrating-sphere system for measuring the optical properties of tissue. Applied Optics, 1993, 32(4): 399-410

142
ZhuD,LuW,ZengS, . Effect of light losses of sample between two integrating spheres on optical properties estimation. Journal for Biomedical Optics, 2007, 12(6): 064004

DOI

143
SardarD K,MayoM. L, GlickmanR D. Optical characterization of melanin. Journal for Biomedical Optics, 2001, 6(4): 404-411

DOI

144
CheongW F,PrahlS A,WelchA J. A review of the optical properties of biological tissues. IEEE Journal of Quantum Electronics, 1990, 26(12): 2166-2185

DOI

145
BashkatovA N,GeninaE A,KochubeyV I, . Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm. Journal of Physics D: Applied Physics, 2005, 38: 2343-2355

DOI

146
TroyT L,ThennadilS N. Optical properties of human skin in the near infrared wavelength range of 1000 to 2200 nm. Journal of Biomedical Optics, 2001, 6(2): 167-176

DOI

147
WangL,JacquesL S,ZhengL. MCML- Monte Carlo modeling of light transport in multi-layered tissues. Computer Methods & Programs in Biomedicine, 1995, 47(2): 131-146

DOI

148
LiuQ,RamanujamN. Sequential estimation of optical properties of a two-layered epithelial tissue model from depth-resolved ultraviolet-visible diffuse reflectance spectra. Applied Optics, 2006, 45(19): 4776-4790

DOI

149
WeidnerV R,HsiaJ J,AdamsB. Laboratory intercomparison study of pressed polytetrafluoroethylene powder reflectance standards. Applied Optics, 1985, 24(14): 2225-2230

150
BrueggeC J,StiegmanA E,RainenR A, . Use of Spectralon as a diffuse reflectance standard for in-flight calibration of earth-orbiting sensors. Optical Engineering, 1993, 32(4): 805-814

DOI

151
Courreges-LacosteG B,SchaarsbergJ,SprikR, . Modeling of Spectralon diffusers for radiometric calibration in remote sensing. Optical Engineering, 2003, 42(12): 3600-3607

DOI

152
McGuckinB T,HanerD A,MenziesR T. Multiangle imaging spectroradiometer: optical characterization of the calibration panels. Applied Optics, 1997, 36(27): 7016-7022

DOI

153
StiegmanA E,BrueggeC J,SpringsteenA W. Ultraviolet stability and contamination analysis of Spectralon diffuse reflectance material. Optical Engineering, 1993, 32(4): 799-804

DOI

154
FairchildM D,DaoustD J O. Goniospectrophotometric analysis of pressed PTFE powder for use as a primary transfer standard. Applied Optics, 1988, 27(16): 3392-3396

155
KimC S,KongH J. Rapid absolute diffuse spectral reflectance factor measurements using a silicon-photodiode array. Color Research and Application, 1997, 22(4): 275-279

DOI

156
SadhwaniA,SchomackerK T,TearneyG J, . Determination of Teflon thickness with laser speckle I. potential for burn depth diagnosis. Applied Optics, 1996, 35(28): 5727-5735

DOI

157
EarlyE A,BarnesP Y,JohnsonB C, . Bidirectional reflectance round-robin in support of the earth observing system program. Journal of Atmospheric and Oceanic Technology, 1999, 17: 1077-1091

DOI

158
HuberN,HeitzJ,BauerleD. Pulsed-laser ablation of polytetrafluoroethylene (PTFE) at various wavelengths. The European Physical Journal Applied Physics, 2004, 25(1): 33-38

DOI

159
LiQ,LeeB J,ZhangZ M, . Light scattering of semitransparent sintered polytetrafluoroethylene films. Journal of Biomedical Optics, 2008, 13(5): 054064-1/12

160
CaronJ,AndraudC,LafaitJ. Radiative transfer calculations in multilayer systems with smooth and rough interfaces. Journal of Modern Optics, 2004, 51(4): 575-595

DOI

161
PakK,TsangL,LiL, . Combined random rough surface and volume scattering based on Monte Carlo simulations of solutions of Maxwell’s equations. Radio Science, 1993, 28(3): 331-338

DOI

162
SentenacA,GiovanniniH,SaillardM. Scattering from rough inhomogeneous media: splitting of surface and volume scattering. Journal of the Optical Society of America A, 2002, 19(4): 727-736

DOI

Outlines

/