Radiative properties of materials with surface scattering or volume scattering: A review

Qunzhi ZHU , Hyunjin LEE , Zhuomin M. HANG

Front. Energy ›› 2009, Vol. 3 ›› Issue (1) : 60 -79.

PDF (625KB)
Front. Energy ›› 2009, Vol. 3 ›› Issue (1) : 60 -79. DOI: 10.1007/s11708-009-0011-3
REVIEW ARTICLE
REVIEW ARTICLE

Radiative properties of materials with surface scattering or volume scattering: A review

Author information +
History +
PDF (625KB)

Abstract

Radiative properties of rough surfaces, particulate media and porous materials are important in thermal engineerit transfer between surfaces and volume elements in participating media, as well as for accurate radiometric temperature measurements. In this paper, recent research on scattering of thermal radiation by rough surfaces, fibrous insulation, soot, aerogel, biological materials, and polytetrafluoroethylene (PTFE) was reviewed. Both theoretical modeling and experimental investigation are discussed. Rigorous solutions and approximation methods for surface scattering and volume scattering are described. The approach of using measured surface roughness statistics in Monte Carlo simulations to predict radiative properties of rough surfaces is emphasized. The effects of various parameters on the radiative properties of particulate media and porous materials are summarized.

Keywords

aerogel / fiber / particle scattering / radiative properties / soot / surface roughness

Cite this article

Download citation ▾
Qunzhi ZHU, Hyunjin LEE, Zhuomin M. HANG. Radiative properties of materials with surface scattering or volume scattering: A review. Front. Energy, 2009, 3(1): 60-79 DOI:10.1007/s11708-009-0011-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

ModestM F. Radiative Heat Transfer, 2nd edition. San Diego CA: Academic Press, 2003

[2]

ZhangZ M. Surface temperature measurement using optical techniques. In: Tien C Led. Annual Review of Heat Transfer, New York: Begell House, 2000, 51-411

[3]

TimansP J. Thermal radiative properties of semiconductors. Advances in Rapid Thermal and Integrated Processing (Edited by Roozeboom F), Dordrecht, Netherlands: Academic Publishers, 1996, 35-102

[4]

WenC D,MudawarI. Emissivity characteristics of roughened aluminum alloy surfaces and assessment of multispectral radiation thermometry (MRT) emissivity models. International Journal of Heat and Mass Transfer, 2004, 47(17, 18): 3591-3605

[5]

BeckmannP,SpizzichinoA. The Scattering of Electromagnetic Waves from Rough Surfaces. Norwood, MA: Artech House, 1987

[6]

SaillardM,SentenacA. Rigorous solutions for electromagnetic scattering from rough surfaces. Waves Random Media, 2001, 11(3): R103-R137

[7]

WarnickK F,ChewW C. Numerical simulation methods for rough surface scattering. Waves Random Media, 2001, 11(1): R1-R30

[8]

MacaskillC. Geometric optics and enhanced backscatter from very rough surfaces. Journal of the Optical Society of America A, 1991, 8(1): 88-96

[9]

TangK,BuckiusR O. A statistical model of wave scattering from random rough surfaces. International Journal of Heat and Mass Transfer, 2001, 44(21): 4059-4073

[10]

ZhouY H,ShenY J,ZhangZ M, . A Monte Carlo model for predicting the effective emissivity of the silicon wafer in rapid thermal processing furnaces. International Journal of Heat and Mass Transfer, 2002, 45(9): 1945-1949

[11]

ProkhorovA V,HanssenL M. Algorithmic model of microfacet BRDF for Monte Carlo calculation of optical radiation transfer. SPIE, 2003, 5192: 141-157

[12]

ZhuQ Z,ZhangZ M. Anisotropic slope distribution and bidirectional reflectance of a rough silicon surface. Journal of Heat Transfer, 2004, 126(6): 985-993

[13]

LeeH J,LeeB J,ZhangZ M. Modeling the radiative properties of semitransparent wafers with rough surfaces and thin-film coatings. Journal of Quantitative Spectroscopy & Radiative Transfer, 2005, 93(1-3): 185-194

[14]

GuérinC A. Scattering on rough surfaces with alpha-stable non-Gaussian height distributions. Waves Random Media, 2002, 12(3): 293-306

[15]

ViskantaR,MengüçM P. Radiative transfer in dispersed media. Applied Mechanics Reviews, 1989, 42(9): 241-259

[16]

TongT W,SwathiP S. Examination of the radiative properties of coated silica fibers. Journal of Thermal Insulation, 1987, 11: 7-31

[17]

BaillisD,SacaduraJ F. Thermal radiation properties of dispersed media: theoretical prediction and experimental characterization. Journal of Quantitative Spectroscopy & Radiative Transfer, 2000, 67(5): 327-363

[18]

ViskantaR,MengüçM P. Radiation heat transfer in combustion systems. Progress in Energy and Combustion Science, 1987, 13(2): 97-160

[19]

FrickeJ,EmmerlingA. Aerogels. Journal of the American Ceramic Society, 1992, 75(8): 2027-2036

[20]

WenC D,MudawarI. Emissivity characteristics of polished aluminum alloy surfaces and assessment of multispectral radiation thermometry (MRT) emissivity models. International Journal of Heat and Mass Transfer, 2005, 48(7): 1316-1329

[21]

SchietingerC. Wafer temperature measurement in RTP. In: Roozeboom F, ed. Advances in Rapid Thermal and Integrated Processing, Dordrecht, Netherlands: Academic Publishers, 1996, 103-123

[22]

SiegelR,HowellJ R. Thermal Radiation Heat Transfer. 4th ed. New York: Taylor & Francis, 2002

[23]

ZhangZ M. Nano/Microscale Heat Transfer. New York: McGraw-Hill, 2007

[24]

PriestR G,GermerT A. Polarimetric BRDF in the microfacet model: theory and measurements. Proceedings of the Meeting of the Military Sensing Symposia Specialty Group on Passive Sensors, 2000, 1: 169-181

[25]

FengW W,WeiQ N,WangS M, . Numerical simulation of polarized Bidirectional Reflectance Distribution Function (BRDF) based on micro-facet model. SPIE, 2008, 6622: 66220A

[26]

OgilvyJ A. Theory of Wave Scattering from Random Rough Surfaces. New York: Adam Hilger, 1991

[27]

ShenY J,ZhangZ M,TsaiB K, . Bidirectional reflectance distribution function of rough silicon wafers. International Journal of Thermophysics, 2001, 22(4): 1311-1326

[28]

ZhangZ M,FuC J,ZhuQ Z. Optical and thermal radiative properties of semiconductors related to micro/nanotechnology. Advances in Heat Transfer, 2003, 37: 179-296

[29]

StoverJ. Optical Scattering: Measurement and Analysis. Bellingham, WA: SPIE Press, 1995

[30]

ZhuQ Z,ZhangZ M. Correlation of angle-resolved light scattering with the microfacet orientation of rough silicon surfaces. Optical Engineering, 2005, 44(7): 073601

[31]

LeeH J,ChenY B,ZhangZ M. Directional radiative properties of anisotropic rough silicon and gold surfaces. International Journal of Heat and Mass Transfer, 2006, 49(23-24): 4482-4495

[32]

ResnikD,VrtacnikD,AmonS. Morphological study of {311} crystal planes anisotropically etched in (100) silicon: role of etchants and etching parameters. Journal of Micromechanics and Microengineering, 2000, 10(3): 430-439

[33]

O'DonnellK A,MendezE R. Experimental study of scattering from characterized random surfaces. Journal of the Optical Society of America A, 1987, 4(7): 1194-1205

[34]

Nieto-VesperinasM,Soto-CrespoJ M. Monte Carlo simulations for scattering of electromagnetic waves from perfectly conductive random rough surfaces. Optics Letters, 1987, 12(12): 979-981

[35]

MaradudinA A,MichelT,McGurnA R, . Enhanced backscattering of light from a random grating. Annals of Physics, 1990, 203(2): 255-307

[36]

Sanchez-GilJ A,Nieto-VesperinasM. Light scattering from random rough dielectric surfaces. Journal of the Optical Society of America A, 1991, 8(8): 1270-1286

[37]

LuJ Q,MaradudinA A,MichelT. Enhanced backscattering from a rough dielectric film on a reflecting substrate. Journal of the Optical Society of America B, 1991, 8(2): 311-318

[38]

GuZ H,LuJ Q.MaradudinA A. Enhanced backscattering from a rough dielectric film on a glass substrate. Journal of the Optical Society of America A, 1993, 10(8): 1753-1764

[39]

FuK,HsuP F. Modeling the radiative properties microscale random roughness surfaces. Journal of Heat Transfer, 2007, 129(1): 71-78

[40]

LettieriT R,MarxE,SongJ F, . Light scattering from glossy coatings on paper. Applied Optics, 1991, 30(30): 4439-4447

[41]

TangK,KawkaP A,BuckiusR O. Geometric optics applied to rough surfaces coated with an absorbing thin film. Journal of Thermophysics and Heat Transfer, 1999, 13(2): 169-176

[42]

IcartI,ArquesD. Simulation of the optical behavior of rough identical multilayer. SPIE, 2000, 4100: 84-95

[43]

ElfouhailyT M,GuérinC A. A critical survey of approximate scattering wave theories from random rough surfaces. Waves Random Media, 2004, 14(4): R1-R40

[44]

ThorsosE I. The validity of the Kirchhoff approximation for rough surface scattering using a Gaussian roughness spectrum. Journal of the Acoustical Society of America, 1988, 83(1): 78-92

[45]

Soto-CrespoJ M,Nieto-VesperinasM,FribergA T. Scattering from slightly rough random surfaces-a detailed study on the validity of the small perturbation method. Journal of the Optical Society of America A, 1990, 7(7): 1185-1201

[46]

TangK,DimennaR A,BuckiusR O. Regions of validity of the geometric optics approximation for angular scattering from very rough surfaces. International Journal of Heat and Mass Transfer, 1997, 40(1): 49-59

[47]

FuK,HsuP F. New regime map of the geometric optics approximation for scattering from random rough surfaces. Journal of Quantitative Spectroscopy & Radiative Transfer, 2008, 109(2): 180-188

[48]

ZhouY H,ZhangZ M. Radiative properties of semitransparent silicon wafers with rough surfaces. Journal of Heat Transfer, 2003, 125(3): 462-470

[49]

ZhuQ Z,LeeH J,ZhangZ M. The validity of using thin-film optics in modeling the bidirectional reflectance of coated rough surfaces. Journal of Thermophysics and Heat Transfer, 2005, 19: 548-555

[50]

LeeH J,ZhangZ M. Measurement and modeling of the bidirectional reflectance of SiO2 coated Si surfaces. International Journal of Thermophysics, 2006, 27(3): 820-839

[51]

BruceN C. Scattering of light from surfaces with one-dimensional structure calculated by the ray-tracing method. Journal of the Optical Society of America A, 1997, 14(8): 1850-1858

[52]

LeeH J,ZhangZ M. Applicability of phase ray-tracing method for light scattering from rough surfaces. Journal of Thermophysics and Heat Transfer, 2007, 21: 330-336

[53]

BarnesP Y,EarlyE A,ParrA C. Spectral Reflectance, NIST Special Publication250-48. Washington, DC: U.S. Government Printing Office, 1998

[54]

ShenY J,ZhuQ Z,ZhangZ M. A scatterometer for measuring the bidirectional reflectance and transmittance of semiconductor wafers with rough surfaces. Review of Scientific Instruments, 2003, 74(11): 4885-4892

[55]

DaiJ M,QiC,SunX G. Comparison and research for several Bi-directional reflectance distribution function (BRDF) measuring. SPIE, 2003, 5280: 655-660

[56]

ZhaoZ Y,QiC,DaiJ M. Design of multi-spectrum BRDF measurement system. Chinese Optics Letters, 2007, 5(3): 168-171

[57]

FengW W,WeiQ N. A scatterometer for measuring the polarized bidirectional reflectance distribution function of painted surfaces in the infrared. Infrared Physics & Technology, 2008, 51: 559-563

[58]

LeeH J,BrysonA C,ZhangZ M. Measurement and modeling of the emittance of silicon wafers with anisotropic roughness. International Journal of Thermophysics, 2007, 28(3): 918-933

[59]

GhmariF,SassiI,SifaouiM S. Directional hemispherical radiative properties of random dielectric rough surfaces. Waves Random Complex, 2005, 15(4): 469-486

[60]

Van de HulstH C. Light Scattering by Small Particles. New York: Dover, 1981 (New York: Wiley, 1957)

[61]

KerkerM. The Scattering of Light and Other Electromagnetic Radiation. New York: Academic Press, 1969

[62]

BohrenC F,HuffmanD R. Absorption and Scattering of Light by Small Particles. New York: Wiley, 1983

[63]

SchusterA. Radiation through foggy atmospheres. The Astrophysical Journal, 1905, 21(1): 1-22

[64]

KubelkaP,MunkF. An article on optics of paint layers. Z Tech Phys, 1931, 12(11a): 593-601

[65]

ChandrasekharS. Radiative Transfer. New York: Dover, 1960

[66]

IshimaruA. Wave Propagation and Scattering in Random Media. New York: IEEE Press, 1997 (Originally published in 1978 by Academic Press, Vols. 1&2)

[67]

MishchenkoM I. Vector radiative transfer equation for arbitrarily shaped and arbitrarily oriented particles: a microphysical derivation from statistical electromagnetics. Applied Optics, 2002, 41(33): 7114-7134

[68]

TienC L,DrolenB L. Thermal radiation in particulate media with dependent and independent scattering. In: Chawla T Ced. Annual Review of Numerical Fluid Mechanics and Heat Transfer, New York: Hemisphere Publishing Corp, 1987, 1-32

[69]

HapkeB. Bidirectional reflectance spectroscopy - I. Theory. Journal of Geophysical Research, 1981, 86(B4): 3039-3054

[70]

KokhanovskyA A,SokoletskyL G. Reflection of light from semi-infinite absorbing turbid media. Part 2: Plane albedo and reflection function. Color Research and Application, 2006, 31(6): 498-509

[71]

MishchenkoM I,DlugachJ M,YanovitskijE G, . Bidirectional reflectance of flat, optically thick particulate layers: an efficient radiative transfer solution and applications to snow and soil surfaces. Journal of Quantitative Spectroscopy & Radiative Transfer, 1999, 63(4): 409-432

[72]

WilliamsM M R. The searchlight problem in radiative transfer with internal reflection. Journal of Physics A: Mathematical and Theoretical, 2007, 40(24): 6407-6425

[73]

MuellerD W, CrosbieA L. Three-dimensional radiative transfer in an anisotropically scattering, plane-parallel medium: generalized reflection and transmission functions. Journal of Quantitative Spectroscopy & Radiative Transfer, 2002, 75(6): 661-721

[74]

MudgettP S,RichardsL W. Multiple scattering calculations for technology. Applied Optics, 1971, 10(7): 1485-1502

[75]

StamnesK,TsayS C,WiscombeW, et al. Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. Applied Optics, 1988, 27(12): 2502-2509

[76]

FivelanW A. Three-dimensional radiative heat-transfer solutions by the discrete-ordinates method. Journal of Thermophysics and Heat Transfer, 1988, 2(4): 309-316

[77]

EvansK E. Two-dimensional radiative transfer in cloudy atmospheres: the spherical harmonic spatial grid method. Journal of the Atmospheric Sciences, 1993, 50(18): 3111-3124

[78]

KisselevV B,RobertiL ,PeronaG. An application of the finite element method to the solution of the radiative transfer equation. Journal of Quantitative Spectroscopy & Radiative Transfer, 1994, 51(5-6): 545-663

[79]

LiuL H. Finite element simulation of radiative heat transfer in absorbing and scattering media. Journal of Thermophysics and Heat Transfer, 2004, 18(3): 555-557

[80]

AnW,RuanL M,QiH, . Finite element method for radiative heat transfer in absorbing and anisotropic scattering media. Journal of Quantitative Spectroscopy & Radiative Transfer, 2005, 96(3-4): 409-422

[81]

ChaiJ,ParthasarathyG,PatankarS, . A finite-volume radiation heat transfer procedure for irregular geometries. Journal of Thermophysics and Heat Transfer, 1994, 9(3): 410-415

[82]

HowellJ R. The Monte Carlo method in radiative heat transfer. Journal of Heat Transfer, 1998, 120(3): 547-560

[83]

GjerstadK I,StamnesJ J,HamreB, . Monte Carlo and discrete-ordinate simulations of irradiances in the coupled atmosphere-ocean system. Applied Optics, 2003, 42(15): 2609-2622

[84]

ModestM F. Backward Monte Carlo simulations in radiative heat transfer. Journal of Heat Transfer, 2003, 125(1): 57-62

[85]

LuX,HsuP F. Reverse Monte Carlo simulations of ultra-short light pulse propagation within three-dimensional nonhomogeneous media. Journal of Thermophysics and Heat Transfer, 2005, 19(3): 353-359

[86]

ChengQ,ZhouH C. The DRESOR method for a collimated irradiation on an isotropically scattering layer. Journal of Heat Transfer, 2007, 129(5): 634-645

[87]

ZhouH C,ChenD L,ChengQ. A new way to calculate radiative intensity and solve radiative transfer equation through using the Monte Carlo method. Journal of Quantitative Spectroscopy & Radiative Transfer, 2004, 83(3-4): 459-481

[88]

ZhaoJ M,LiuL H. Discontinuous spectral element method for solving radiative heat transfer in multidimensional semitransparent media. Journal of Quantitative Spectroscopy & Radiative Transfer, 2007, 107(1): 1-16

[89]

TanH P,LallemandM. Transient radiative-conductive heat transfer in flat glasses submitted to temperature, flux and mixed boundary conditions. International Journal of Heat and Mass Transfer, 1989, 32(5): 795-810.

[90]

TanH P,XiaX L,LiuL H, . Numerical calculation for Infrared Radiative Characteristics and Transfer- Computational Thermal Radiation. Harbin: Press of the Harbin Institute of Technology, 2006 (in Chinese)

[91]

LiuL H,ZhaoJ M,TanH P. Finite/Spectral Element Methods for Solving Radiative Transfer Equation. Beijing: Science Press, 2008 (in Chinese)

[92]

MishchenkoM I,HovenierJ W,TravisL D, eds. Light Scattering by Nonspherical Particles. San Diego: Academic Press, 2000

[93]

TsangL,KongJ A,DingK H. Scattering of Electromagnetic Waves-Theories and Applications, New York: Wiley, 2000

[94]

KahnertF M. Numerical method in electromagnetic scattering theory. Journal of Quantitative Spectroscopy & Radiative Transfer, 2003, 79-80(7): 775-824

[95]

TafloveA,HagnessS C. Computational Electrodynamics: the Finite-Difference Time-Domain method. 3rd ed. Boston MA: Artech House, 2005

[96]

DraineB T,FlatauP J. Discrete-dipole approximation for scattering calculations. Journal of the Optical Society of America A, 1994, 11(4): 1491-1499

[97]

WangK Y,TienC L. Radiative heat transfer through opacified fibers and powders. Journal of Quantitative Spectroscopy and Radiative Transfer, 1983, 30(3): 213-223

[98]

LeeS C. Effect of fiber orientation on thermal radiation in fibrous media. International Journal of Heat and Mass Transfer, 1989, 32(2): 311-319

[99]

DombrovskyL A. Quartz-fiber thermal insulation: infrared radiative properties and calculation of radiative-conductive heat transfer. Journal of Heat Transfer, 1996, 118(2): 408-414

[100]

LeeS C. Radiative transfer through a fibrous medium allowance for fiber orientation. Journal of Quantitative Spectroscopy and Radiative Transfer, 1986, 36(3): 253-263

[101]

YamadaJ,KurosakiY. Radiative characteristics of fibers with a large size parameter. International Journal of Heat and Mass Transfer, 2000, 43(6): 981-991

[102]

CoquardR,BaillisD. Radiative properties of dense fibrous medium containing fibers in the geometric limit. Journal of Heat Transfer, 2006, 128(10): 1022-1030

[103]

TianW,HuangW,ChiuW K S. Thermal radiative properties of a semitransparent fiber coated with a thin absorbing film. Journal of Heat Transfer, 2007, 129(6): 763-767

[104]

LeeS C. Effective propagation constant of fibrous media containing parallel fibers in the dependent scattering regime. Journal of Heat Transfer, 1992, 114(2): 473-478

[105]

LeeS C. Dependent vs independent scattering in fibrous composites containing parallel fibers. Journal of Thermophysics and Heat Transfer, 1994, 8(4): 641-646

[106]

LeeS C. Scattering by a dense layer of infinite cylinders at normal incidence. Journal of the Optical Society of America, 2008, 25(5): 1022-1029

[107]

LeeS C. Scattering by a dense finite layer of infinite cylinders at oblique incidence. Journal of the Optical Society of America A, 2008, 25(10): 2489-2498

[108]

WangK Y,KumarS,TienC L. Radiative transfer in thermal insulations of hollow and coated fibers. Journal of Thermophysics and Heat Transfer, 1987, (1): 289-295

[109]

YangL L,HeX D,HeF. ITO coated quartz fibers for heat radiative applications. Materials Letters, 2008, 62(30): 4539-4541

[110]

YanChanghai,MengSonghe,ChenGuiqing, . Research on nanocomposite material coating on fibrous insulations. Materials Review, 2006, 20(4): 33-135 (in Chinese)

[111]

PapiniM. Influence of the orientation of polypropylene fibers on their radiative properties. Applied Spectroscopy, 1994, 48(4): 472-476

[112]

YamadaJ. Radiative properties of fibers with non-circular cross sectional shapes. Journal of Quantitative Spectroscopy & Radiative Transfer, 2002, 73(2-5): 261-272

[113]

ManickavasagamS,MengüçM P. Scattering matrix elements of fractal-like soot agglomerates. Applied Optics, 1997, 36(6): 1337-1351

[114]

ZhuJinyu,ChoiM Y,MulhollandG W. Measurement of visible and near-IR optical properties of soot produced from laminar flames. Proceedings of the Combustion Institute, 2002, 29: 2367-2374

[115]

LeiC X,LiF L,LiuC D, . Light scattering properties of soot aggregates. The Journal of Light Scattering, 2006, 18(3): 261-266

[116]

HuangC J,LiuY F,WuZ S. Numerical calculation of optical cross section and scattering matrix for soot aggregation particle. Acta Physica Sinica, 2007, 56(7): 4068-4074 (in Chinese)

[117]

LiuL,MishchenkoM I,ArnottW P. A study of radiative properties of fractal soot aggregates using the superposition T-matrix method. Journal of Quantitative Spectroscopy & Radiative Transfer, 2008, 109(15): 2656-2663

[118]

DobbinsR A,MegaridisM. Absorption and scattering of light by polydisperse aggregates. Applied Optics, 1991, 30(33): 4747-4754

[119]

LiuL,MishchenkoM I. Scattering and radiative properties of complex soot and soot-containing aggregate particles. Journal of Quantitative Spectroscopy & Radiative Transfer, 2007, 106(1-3): 262-273

[120]

MackowskiD W. A simplified model to predict the effects of aggregation on the absorption properties of soot particles. Journal of Quantitative Spectroscopy & Radiative Transfer, 2006, 100(1-3): 237-249

[121]

EymetV,BrasilA M,HaM E. Numerical investigation of the effect of soot aggregation on the radiative properties in the infrared region and radiative heat transfer. Journal of Quantitative Spectroscopy & Radiative Transfer, 2002, 74(6): 697-718

[122]

YonJ,ClaudeR,ThierryG. Extension of RDG-FA for scattering prediction of aggregates of soot taking into account interactions of large monomers. Particle & Particle Systems Characterization, 2008, 25(1): 54-67

[123]

FariasT L,KoyluU O,CarvalhoM G. Range of validity of the Rayleigh-Debye-Gans theory for optics of fractal aggregates. Applied Optics, 1996, 35(33): 6560-6567

[124]

MackowskiD W. Electrostatics analysis of radiative absorption by sphere clusters in the Rayleigh limit: application to soot particles. Applied Optics, 1995, 34(18): 3535

[125]

LeeS C,TienC L. Effect of soot shape on soot radiation. Journal of Quantitative Spectroscopy & Radiative Transfer, 1983, 29(3): 259-265

[126]

NilssonT,SundenB. Thermal radiative coefficients of cylindrically and spherically shaped soot particles and soot agglomerates. Heat and Mass Transfer, 2004, 41(1): 12-22

[127]

HermannG,IdenR,MielkeM, . On the way to commercial production of silica aerogel. Journal of Non-Crystalline Solids, 1995, 186: 380-387

[128]

ZhouB,ShenJ,WuY H, . Hydrophobic silica aerogels derived from polyethoxydisiloxane and perfluoroalkylsilane. Materials Science and Engineering C, 2007, 27(5–8): 1291-1294

[129]

ShenJ,ZhangZ H,WuG M, . Preparation and characterization of silica aerogels derived from ambient pressureJournal of Materials Science and Technology, 2006, 22(6): 798-802

[130]

ReimM,BeckA,KornerW, . Highly insulating aerogel glazing for solar energy usage. Solar Energy, 2002, 72(1): 21-29

[131]

WangP,KornerW,EmmerlingA, . Optical investigations of silica aerogels. Journal of Non-Crystalline Solids, 1992, 145(1-3): 141-145

[132]

BeckA,KornerW,FrickeJ. Optical investigations of granular aerogel fills. Journal of Physics D: Applied Physics, 1994, 27(1): 13-18

[133]

ZhuQunzhi,DuanRui,LiYongguang. Measurements of solar optical properties of transparent insulation materials. Proceedings of the ASME/JSME Thermal Engineering Summer Heat Transfer Conference, Vancouver, Canada, 2007, 919-924

[134]

WangP,BeckA,KornerW, . Density and refractive index of silica aerogels after low- and high-temperature supercritical drying and thermal treatmen. Journal of Physics D: Applied Physics, 1994, 27(2): 414-418

[135]

PajonkG M. Some applications of silica aerogels. Colloid and Polymer Science, 2003, 281(7): 637-651

[136]

IshimaruA. Diffusion of light in turbid material. Applied Optics, 1989, 28(12): 2210-2215

[137]

ContiniD,MartelliF,ZaccantiG. Photon migration through a turbid slab described by a model based on diffusion approximation I: Theory. Applied Optics, 1997, 36(19): 4587-4599

[138]

ChenB,StamnesK,StamnesJ J. Validity of the diffusion approximation in bio-optical imaging. Applied Optics, 2001, 40(34): 6356-6366

[139]

PrahlS A,van GemertM J C,WelchA J. Determining the optical properties of turbid media by using the adding-doubling method. Applied Optics, 1993, 32(4): 559-568

[140]

MarchesiniR,BertoniA,AndreolaS, . Extinction and absorption coefficients and scattering phase functions of human tissues in vitro. Applied Optics, 1989, 28(12): 2318-2324

[141]

PickeringJ W,PrahlS A,van WieringenN, . Double-integrating-sphere system for measuring the optical properties of tissue. Applied Optics, 1993, 32(4): 399-410

[142]

ZhuD,LuW,ZengS, . Effect of light losses of sample between two integrating spheres on optical properties estimation. Journal for Biomedical Optics, 2007, 12(6): 064004

[143]

SardarD K,MayoM. L, GlickmanR D. Optical characterization of melanin. Journal for Biomedical Optics, 2001, 6(4): 404-411

[144]

CheongW F,PrahlS A,WelchA J. A review of the optical properties of biological tissues. IEEE Journal of Quantum Electronics, 1990, 26(12): 2166-2185

[145]

BashkatovA N,GeninaE A,KochubeyV I, . Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm. Journal of Physics D: Applied Physics, 2005, 38: 2343-2355

[146]

TroyT L,ThennadilS N. Optical properties of human skin in the near infrared wavelength range of 1000 to 2200 nm. Journal of Biomedical Optics, 2001, 6(2): 167-176

[147]

WangL,JacquesL S,ZhengL. MCML- Monte Carlo modeling of light transport in multi-layered tissues. Computer Methods & Programs in Biomedicine, 1995, 47(2): 131-146

[148]

LiuQ,RamanujamN. Sequential estimation of optical properties of a two-layered epithelial tissue model from depth-resolved ultraviolet-visible diffuse reflectance spectra. Applied Optics, 2006, 45(19): 4776-4790

[149]

WeidnerV R,HsiaJ J,AdamsB. Laboratory intercomparison study of pressed polytetrafluoroethylene powder reflectance standards. Applied Optics, 1985, 24(14): 2225-2230

[150]

BrueggeC J,StiegmanA E,RainenR A, . Use of Spectralon as a diffuse reflectance standard for in-flight calibration of earth-orbiting sensors. Optical Engineering, 1993, 32(4): 805-814

[151]

Courreges-LacosteG B,SchaarsbergJ,SprikR, . Modeling of Spectralon diffusers for radiometric calibration in remote sensing. Optical Engineering, 2003, 42(12): 3600-3607

[152]

McGuckinB T,HanerD A,MenziesR T. Multiangle imaging spectroradiometer: optical characterization of the calibration panels. Applied Optics, 1997, 36(27): 7016-7022

[153]

StiegmanA E,BrueggeC J,SpringsteenA W. Ultraviolet stability and contamination analysis of Spectralon diffuse reflectance material. Optical Engineering, 1993, 32(4): 799-804

[154]

FairchildM D,DaoustD J O. Goniospectrophotometric analysis of pressed PTFE powder for use as a primary transfer standard. Applied Optics, 1988, 27(16): 3392-3396

[155]

KimC S,KongH J. Rapid absolute diffuse spectral reflectance factor measurements using a silicon-photodiode array. Color Research and Application, 1997, 22(4): 275-279

[156]

SadhwaniA,SchomackerK T,TearneyG J, . Determination of Teflon thickness with laser speckle I. potential for burn depth diagnosis. Applied Optics, 1996, 35(28): 5727-5735

[157]

EarlyE A,BarnesP Y,JohnsonB C, . Bidirectional reflectance round-robin in support of the earth observing system program. Journal of Atmospheric and Oceanic Technology, 1999, 17: 1077-1091

[158]

HuberN,HeitzJ,BauerleD. Pulsed-laser ablation of polytetrafluoroethylene (PTFE) at various wavelengths. The European Physical Journal Applied Physics, 2004, 25(1): 33-38

[159]

LiQ,LeeB J,ZhangZ M, . Light scattering of semitransparent sintered polytetrafluoroethylene films. Journal of Biomedical Optics, 2008, 13(5): 054064-1/12

[160]

CaronJ,AndraudC,LafaitJ. Radiative transfer calculations in multilayer systems with smooth and rough interfaces. Journal of Modern Optics, 2004, 51(4): 575-595

[161]

PakK,TsangL,LiL, . Combined random rough surface and volume scattering based on Monte Carlo simulations of solutions of Maxwell’s equations. Radio Science, 1993, 28(3): 331-338

[162]

SentenacA,GiovanniniH,SaillardM. Scattering from rough inhomogeneous media: splitting of surface and volume scattering. Journal of the Optical Society of America A, 2002, 19(4): 727-736

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (625KB)

3725

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/