REVIEW ARTICLE

Thermal radiative properties of metamaterials and other nanostructured materials: A review

  • Ceji FU , 1 ,
  • Zhuomin M. ZHANG 2
Expand
  • 1. State Key Laboratory for Turbulence and Complex Systems and Department of Mechanics and Aerospace Engineering, Peking University, Beijing 100871, China
  • 2. G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA

Received date: 10 Sep 2008

Accepted date: 26 Oct 2008

Published date: 05 Mar 2009

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

The ability to manufacture, control, and manipulate structures at extremely small scales is the hallmark of modern technologies, including microelectronics, MEMS/NEMS, and nano-biotechnology. Along with the advancement of microfabrication technology, more and more investigations have been performed in recent years to understand the influence of microstructures on radiative properties. The key to the enhancement of performance is through the modification of the reflection and transmission properties of electromagnetic waves and thermal emission spectra using one-, two-, or three-dimensional micro/nanostructures. This review focuses on recent developments in metamaterials–manmade materials with exotic optical properties, and other nanostructured materials, such as gratings and photonic crystals, for application in radiative energy transfer and energy conversion systems.

Cite this article

Ceji FU , Zhuomin M. ZHANG . Thermal radiative properties of metamaterials and other nanostructured materials: A review[J]. Frontiers in Energy, 2009 , 3(1) : 11 -26 . DOI: 10.1007/s11708-009-0009-x

Acknowledgements

C. J. Fu thanks the financial support from the National Natural Science Foundation of China (Grant No. 50606001). Z. M. Zhang thanks the support from the US Department of Energy (DE-FG02-06ER46343) and the US National Science Foundation (CBET-0500113).
1
Sharma A K, Zaidi S H, Logofatu P C, . Optical and electrical properties of nanostructured metal-silicon-metal photodetectors. IEEE Journal of Quantum Electronics, 2002, 38(12): 1651-1660

DOI

2
Boueke A, Kuhn R, Fath P, . Latest results on semitransparent POWER silicon solar cells. Solar Energy Materials and Solar Cells, 2001, 65(1–4): 549-553

DOI

3
Zhang Q-C. Recent progress in high-temperature solar selective coatings. Solar Energy Materials and Solar Cells, 2000, 62(1–2): 63-74

DOI

4
Coutts T J. A review of progress in thermophotovoltaic generation of electricity. Renewable and Sustainable Energy Reviews, 1999, 3(2): 77-184

DOI

5
Heinzel A, Boerner V, Gombert A, . Radiation filters and emitters for the NIR based on periodically structured metal surfaces. Journal of Modern Optics, 2000, 47(13): 2399-2419

6
Sai H, Yugami H, Akiyama Y, . Spectral control of thermal emission by periodic microstructured surfaces in the near-infrared region. Journal of the Optical Society of America A, 2001, 18(7): 1471-1476

DOI

7
Lin S Y, Moreno J, Fleming J G. Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation. Applied Physics Letters, 2003, 83(2): 380-382

DOI

8
Timans P J, Sharangpani R, Thakur R P S. Rapid thermal processing. Handbook of Semiconductor Manufacturing Technology. Marcel Dekker, New York, 2000, 201-286

9
Zhang Z M. Surface temperature measurement using optical techniques. Annual Review of Heat Transfer (C.L. Tien, ed). Begell House, New York, 2000, 351-411

10
Naqvi S S H, Krukar R H, McNeil J R, . Etch depth estimation of large-period silicon gratings with multivariate calibration of rigorously simulated diffraction profiles. Journal of the Optical Society of America A, 1994, 11(9): 2485-2493

DOI

11
Coulombe S A, Minhas B K, Raymond C J, . Scatterometry measurement of sub-0.1 μm linewidth Gratings. Journal of Vacuum Science and Technology B, 1998, 16(1): 80-87

DOI

12
Greffet J-J, Carminati R, Joulain K, . Coherent emission of light by thermal sources. Nature, 2002, 416(6876): 61-64

DOI

13
Marquier F, Joulain K, Mulet J-P, . Coherent spontaneous emission of light by thermal sources. Physical Review B, 2004, 69(15): 155412

DOI

14
Lezec H J, Degiron A, Devaux E, . Beam light from a subwavelength aperture. Science, 2002, 297(5582): 820-822

DOI

15
Shelby R A, Smith D R, Schultz S. Experimental verification of a negative index of refraction. Science, 2001, 292(5514): 77-79

DOI

16
Engheta N, Ziolkowski R W, eds. Electromagnetic Metamaterials: Physics and Engineering Explorations. Wiley-IEEE Press, New York, 2006

17
Soukoulis C M, Linden S, Wegener M. Negative refractive index at optical wavelengths. Science, 2007, 315(5808): 47-49

DOI

18
Shalaev V M. Optical negative-index metamaterials. Nature Photonics, 2007, 1(1): 41-48

DOI

19
Valentine J, Zhang S, Zentgraf T, . Three-dimensional optical metamaterial with a negative refractive index. Nature, 2008, 455(7211): 376-379

DOI

20
Zhang Z M, Fu C J, Zhu Q Z. Optical and radiative properties of semiconductors related to micro/nanotechnology. Advances in Heat Transfer, 2003, 37: 179-296

21
Veselago V G. The electrodynamics of substances with simultaneously negative values of ϵ and μ. Soviet Physics Uspekhi, 1968, 10(4): 509-514

DOI

22
Pendry J B. Negative index makes a perfect lens. Physical Review Letters, 2000, 85(18): 3966-3969

DOI

23
Ramakrishna S A. Physics of negative refractive index materials. Reports on Progress in Physics, 2005, 68(2): 449-521

DOI

24
Fu C J. Radiative properties of emerging materials and radiation heat transfer at the nanoscale. Ph.D.dissertation, Georgia Institute of Technology, Atlanta, Georgia, USA, 2004

25
Zhang Z M. Nano/Microscale Heat Transfer. McGraw-Hill, New York, 2007

26
Pendry J B, Holden A J, Stewart W J, . Extremely low frequency plasmons in metallic mesostructures. Physical Review Letters, 1996, 76(25): 4773-4776

DOI

27
Pendry J B, Holden A J, Rubbins D J, . Magnetism from conductors and enhanced nonlinear phenomena. IEEE Transactions on Microwave Theory and Techniques, 1999, 47(11): 2075-2084

DOI

28
Reddick R C, Warmack R J, Ferrell T J. New form of scanning optical microcopy. Physical Review B, 1989. 39(1): 767-770

DOI

29
Shen Y, Jakubczyk D, Xu F, . Two-photon fluorescence imaging and spectroscopy of nanostructure organic materials using a photon scanning tunneling microscope. Applied Physics Letters, 2000, 76(1): 1-3

DOI

30
Fu C J, Zhang Z M. Nanoscale radiation heat transfer for silicon at different doping levels. International Journal of Heat and Mass Transfer, 2006, 49(9,10): 1703-1718

31
Whale M D, Cravalho E G. Modeling and performance of microscale thermophotovoltaic energy conversion devices. IEEE Transactions on Energy Conversion, 2002, 17(1): 130-142

DOI

32
Narayanaswamy A, Chen G. Surface modes for near field thermophotovoltaics. Applied Physics Letters, 2003, 82(20): 3544-3546

DOI

33
Raether H. Surface Plasmons on Smooth and Rough Surfaces and on Gratings. Berlin:Springer-Verlag, 1988

34
Rupin R. Surface polaritons of a left-handed medium. Physics Letters A, 2000, 277(1): 61-64

DOI

35
Kawata S, ed. Near-field Optics and Surface Plasmon Polaritons. Berlin:Springer, 2001

36
Tominaga J, Tsai D P, eds. Optical Nanotechnologies-The Manipulation of Surface and Local Plasmons. Berlin:Springer, ,2003

37
Homola J, Yee S S, Gauglitz G. Surface plasmon resonance sensors: Review. Sensors and Actuators B, 1999, 54(1,2): 3-15

38
Hillenbrand R, Taubner T, Kellmann F. Phonon-enhanced light-matter interaction at the nanometer scale. Nature, 2002, 418(6894): 159–162; Hillenbrand R. Towards phonon photonics: Scattering-type near-field optical microscopy reveals phonon-enhanced near-field interaction. Ultramicroscopy, 2004, 100(3,4): 421-427

39
Maystre D, ed. Selected Papers on Diffraction Gratings. SPIE Milestone Series 83, The International Society for Optical Engineering, Bellingham, WA, 1993

40
Petit R, ed. Electromagnetic Theory of Gratings. Berlin:Springer, 1980

41
Chen Y-B, Zhang Z M, Timans P J. Radiative properties of patterned wafers with nanoscale linewidth. Journal of Heat Transfer, 2007, 129(1): 79-90

DOI

42
Lee B J, Chen Y-B, Zhang Z M. Transmission enhancement through nanoscale metallic slit arrays from the visible to mid-infrared. Journal of Computational and Theoretical Nanoscience, 2008, 5(2): 201-213

43
Fu K, Chen Y-B, Hsu P-F, . Device scaling effect on the spectral-directional absorptance of wafer’s front side. International Journal of Heat and Mass Transfer, 2008, 51(19,20): 4911-4925

44
Joannopoulos J D, Meade R D, Winn J N. Photonic Crystals. Princeton, NJ:Princeton University Press, 1995

45
Sakoda K. Optical Properties of Photonic Crystals. Berlin:Springer-Verlag, 2001

46
Kitttel C. Introduction to Solid State Physics, 8th ed. New York:Wiley, 2004

47
Macleod H A. Thin Film Optical Filters, 3rd ed. Bristol, UK:Institute of Physics, 2001

48
Yeh P. Optical Waves in Layered Media. Wiley, New York, 1988; Yeh P, Yariv A, Hong C S. Electromagnetic propagation in periodic stratified media. I. General theory. Journal of the Optical Society of America, 1977, 67(4): 423-438

DOI

49
Zhang Z M, Fu C J. Unusual photon tunneling in the presence of a layer with a negative refractive index. Applied Physics Letters, 2002, 80(6): 1097-1099

DOI

50
Fu C J, Zhang, Z M. Transmission enhancement using a negative-refraction layer. Microscale Thermophysical Engineering, 2003, 7(3): 221-234

DOI

51
Fu C J, Zhang Z M, Tanner D B. Energy transmission by photon tunneling in multilayer structures including negative index materials. Journal of Heat Transfer, 2005, 127(9): 1046-1052

DOI

52
Park K, Lee B J, Fu C J, . Study of the surface and bulk polaritons with a negative index metamaterials. Journal of the Optical Society of America B, 2005, 22(5): 1016-1023

DOI

53
Liu Z, Hu L, Lin Z. Enhancing photon tunneling by a slab of uniaxially anisotropic left-handed material. Physics Letters A, 2003, 308(4): 294-301

DOI

54
Gao L, Tang C J. Near-field imaging by a multi-layer structure consisting of alternate right-handed and left-handed materials. Physics Letters A, 2004, 322(5,6): 390-395

55
Kim K-Y. Photon tunneling in composite layers of negative- and positive-index media. Physical Review E, 2004, 70(4): 047603

DOI

56
Chen Y-Y, Huang Z-M, Wang Q, . Photon tunneling in one-dimensional metamaterial photonic crystals. Journal of Optics A: Pure and Applied Optics, 2005, 7(9): 519-524

DOI

57
Fang Y-T, Zhou J, Pun E Y B. High-Q filters based on one-dimensional photonic crystals using epsilon-negative materials. Applied Physics B, 2007, 86(4): 587-591

DOI

58
Siegel R, Howell J R. Thermal Radiation Heat Transfer, 4th ed. New York: Taylor and Francis , 2002

59
Hesketh P J, Zemel J N, Gebhart B. Organ pipe radiant modes of periodic micromachined silicon surfaces. Nature, 1986, 324: 549-551

DOI

60
Hesketh P J, Gebhart B, Zemel J N. Measurements of the spectral and directional emission from microgrooved silicon surfaces. Journal of Heat Transfer, 1988, 110(3): 680-686

61
Dimenna R A, Buckius R O. Electromagnetic theory predictions of the directional scattering from triangular surfaces. Journal of Heat Transfer, 1994, 116(3): 639-645

DOI

62
Tang K, Buckius R O. Bi-directional reflection measurements from two-dimensional microcontoured metallic surfaces. Microscale Thermophysical Engineering, 1998, 2(4): 245-260

DOI

63
Sai H, Yugami H, Kanamori Y, . Spectrally selective thermal radiators and absorbers with periodic microstructured surfaces for high-temperature applications. Microscale Thermophysical Engineering, 2003, 7(2): 101-115

DOI

64
Seager C H, Sinclair M B, Fleming J G. Accurate measurements of thermal radiation from a tungsten photonic lattice. Applied Physics Letters, 2005, 86(24): 244105

DOI

65
Chen Y-B, Zhu Q Z, Wright T L, . Bidirectional reflection measurements of periodically microstructured silicon surfaces. International Journal of Thermophysics, 2004, 25(4): 1235-1252

DOI

66
Kreiter M, Oster J, Sambles R, . Thermally induced emission of light from a metallic diffraction grating, mediated by surface plasmons. Optics Communications, 1999, 168(1-4): 117-122

DOI

67
Fu C J, Zhang Z M, Tanner D B. Planar heterogeneous structures for coherent emission of radiation. Optics Letters, 2005, 30(14): 1873-1875

DOI

68
Fu C J, Zhang Z M. Further investigation of coherent thermal emission from single negative materials. Nanoscale and Microscale Thermophysical Engineering, 2008, 12(1): 83-97

DOI

69
Smith D R, Padilla W J, Vier D C, . Composite medium with simultaneously negative permeability and permittivity. Physical Review Letters, 2000, 84(18): 4184-4187

DOI

70
Yen T J, Padilla W J, Fang N, . Terahertz magnetic response from artificial materials. Science, 2004, 303(5663): 1494-1496

DOI

71
Linden S, Enkrich C, Wegener M, . Magnetic response of metamaterials at 100 terahertz. Science, 2004, 306(5700): 1351-1353

DOI

72
Enkrich C, Wegener M, Linden S, . Magnetic metamaterials at telecommunication and visible frequencies. Physical Review Letters, 2005, 95(20): 203901

DOI

73
Lagarkov A N, Sarychev A K. Electromagnetic properties of composites containing elongated conducting inclusions. Physical Review B, 1996, 53(10): 6318-6336

DOI

74
Podolskiy V A, Sarychev A K, Shalaev V M. Plasmon modes in metal nanowires and left-handed materials. Journal of Nonlinear Optical Physics and Materials, 2002, 11(1): 65-74

DOI

75
Dolling D, Enkrich C, Wegener M, . Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials. Optics Letters, 2005, 30(23): 3198-3200

DOI

76
Shalaev V M, Cai W S, Chettiar U K, . Negative index of refraction in optical metamaterials. Optics Letters, 2005, 30(24): 3356-3358

DOI

77
Zhou J F, Zhang L, Tuttle G, . Negative index materials using simple short wire pairs. Physical Review B, 2006, 73(4): 041101(R)

DOI

78
Yuan H K, Chettiar U K, Cai W S, . A negative permeability material at red light. Optics Express, 2007, 15(3): 1076-1083

DOI

79
Zhang S, Fan W J, Panoiu N C, . Experimental demonstration of near-infrared negative-index metamaterials. Physical Review Letters, 2005, 95(13): 137404

DOI

80
Dolling G, Enkrich C, Wegener M, . Simultaneous negative phase and group velocity of light in a metamaterial. Science, 2006, 312(5775): 892-894

DOI

81
Lee B J, Wang L P, Zhang Z M. Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film. Optics Express, 2008, 16(15): 11328-11336

DOI

82
Li T, Wang S M, Liu H, . Dispersion of magnetic plasmon polaritons in perforated trilayer metamaterials. Journal of Applied Physics, 2008, 103(2): 023104

DOI

83
Basu S, Chen Y-B, Zhang Z M. Microscale radaition in thermophotovoltaic devices- a review. International Journal of Energy Research, 2007, 31(6,7): 689-716

84
Sai H, Kanamori Y, Yugami H. Tuning of the thermal radiation spectrum in the near-infrared region by metallic surface microstructures. Journal of Micromechanics and Microengineering, 2005, 15(9): S243-S249

DOI

85
Chen Y-B, Zhang Z M. Design of tungsten complex gratings for thermophotovoltaic radiatiors. Optics Communications, 2007, 269(2): 411-417

DOI

86
Chen Y-B, Zhang Z M. Heavily doped silicon complex gratings as wavelength selective absorbing surfaces. Journal of Physics D: Applied Physics, 2008, 41(9): 095406

DOI

87
Fu C J, Tan W C. Semiconductor Thin Films Combined with Metallic Grating for Selective Improvement of Thermal Radiative Absorption/Emission. Journal of Heat Transfer (In press)

88
Erofeev A F, Kolpakov A V, Makhviladze T M, . Comprehensive RTP modeling and simulation. Proceedings of the 3rd International Rapid Thermal Processing Conference, 1995, 181-197

89
Hebb J P, Jensen K F. The effect of patterns on thermal stress during rapid thermal processing of silicon wafers. IEEE Transactions on Semiconductor Manufacturing, 1998, 11(1): 99-107

DOI

90
Tada H, Abramson A R, Mann S E, . Evaluating the effects of thin film patterns on the temperature distribution of silicon wafers during radiant processing. Optical Engineering, 2000, 39(8): 2296-2304

DOI

91
Liu J, Zhang S J, Chen Y S. Rigorous electromagnetic modeling of radiative interactions with microstructures using the finite volume time-domain method. International Journal of Thermophysics, 2004, 25(4): 1281-1297

DOI

92
Ebbesen T W, Lezec H J, Ghaemi H F, . Extraordinary optical transmission through sub-wavelength hole arrays. Nature, 1988, 391(6668): 667-669

DOI

93
Porto J A, Garcia-Vidal F J, Pendry J B. Transmission resonances on metallic gratings with very narrow slits. Physical Review Letters, 1999, 83(14): 2845-2848

DOI

94
Marquier F, Greffet J-J, Collin S, . Resonant transmission through a metallic film due to coupled modes. Opt Express, 2005, 13(1): 70-76

DOI

95
García-Vidal F J, Martín-Moreno L. Transmission and focusing of light in one-dimensional periodically nanostructured metals. Physical Review B, 2002, 66(15): 155412

DOI

96
Yuan G-H, Wang P, Zhang D-G, . Extraordinary transmission through metallic grating with subwavelength slits for s-polarization illumination. Chinese Physics Letters, 2007, 24(6): 1600-1602

DOI

97
Li L. Use of Fourier series in the analysis of discontinuous periodic structures. Journal of the Optical Society of America A, 1996, 13(9): 1870-1876

DOI

98
Lee B J, Chen Y-B, Zhang Z M. Confinement of infrared radiation to nanometer scales through metallic slit arrays. Journal of Quantitative Spectroscopy and Radiative Transfer, 2008, 109(4): 608-619

DOI

99
Chen Y-B, Lee B J, Zhang Z M. Infrared radiative properties of submicron metallic slit arrays. Journal of Heat Transfer, 2008, 130(8): 082404

DOI

100
Chan D L C, Soljacic M, Joannopoulos J D. Direct calculation of thermal emission for three-dimensionally periodic photonic crystal slabs. Physical Review E, 2006, 74(3): 036615

DOI

101
Narayanaswamy A, Chen G. Thermal emission control with one-dimensional metallodielectric photonic crystals. Physical Review B, 2004, 70(12): 125101

DOI

102
Enoch S, Simon J J, Escoubas L, . Simple layer-by-layer photonic crystal for the control of thermal emission. Applied Physics Letters, 2005, 86(26): 261101.

DOI

103
Huang X, Wang D, Prakash P, Singh J. Design of computational analysis of highly reflective multiple layered thermal barrier coating structure. Materials Science and Engineering A, 2007, 460-461: 101-110

DOI

104
Gaspar-Armenta J A, Villa F. Photonic surface-wave excitation: photonic crystal-metal interface. Journal of the Optical Society of America B, 2003, 20(11): 2349-2354

DOI

105
Lee B J, Fu C J, Zhang Z M. Coherent thermal emission from one-dimensional photonic crystals. Applied Physics Letters, 2005, 879(7): 071904

DOI

106
Lee B J, Zhang Z M. Coherent thermal emission from modified periodic multilayer structures. Journal of Heat Transfer, 2007, 129(1): 17-26

DOI

107
Lee B J, Zhang Z M. Design and fabrication of planar multilayer structures with coherent thermal emission characteristics. Journal of Applied Physics, 2006, 100(6): 063529

DOI

108
Lee B J, Chen Y-B, Zhang Z M. Surface waves between metallic films and truncated photonic crystals observed with reflectance spectroscopy. Optics Letters, 2008, 33(3): 204-206

DOI

109
Lee B J, Zhang Z M. Indirect measurements of coherent thermal emission from a truncated photonic crystal structure. Journal of Thermophysics and Heat Transfer (accepted)

110
Laroche M, Carminati R, Greffet J-J. Coherent thermal antenna using a photonic crystal slab. Physical Review Letters, 2006, 96(12): 123903

DOI

111
Chan D L C, Soljacic M, Joannopoulos J D. Thermal emission and design in 2D-periodic metallic photonic crystal slabs. Optics Express, 2006, 14(19): 8785-8796

DOI

112
Drevillon J, Ben-Abdallah P. Ab initio design of coherent thermal sources. Journal of Applied Physics, 2007, 102(11): 114305

DOI

113
Battula A, Chen S C. Monochromatic polarized coherent emitter enhanced by surface plasmons and a cavity resonance. Physical Review B, 2006, 74(24): 245407

DOI

114
Lin K-Q, Wei L-M, Zhang D-G, . Temperature effects on prism-based surface plasmon resonance sensor. Chinese Physics Letters, 2007, 24(11): 3081-3084

DOI

Outlines

/