Thermal radiative properties of metamaterials and other nanostructured materials: A review

Ceji FU, Zhuomin M. ZHANG

PDF(526 KB)
PDF(526 KB)
Front. Energy ›› 2009, Vol. 3 ›› Issue (1) : 11-26. DOI: 10.1007/s11708-009-0009-x
REVIEW ARTICLE
REVIEW ARTICLE

Thermal radiative properties of metamaterials and other nanostructured materials: A review

Author information +
History +

Abstract

The ability to manufacture, control, and manipulate structures at extremely small scales is the hallmark of modern technologies, including microelectronics, MEMS/NEMS, and nano-biotechnology. Along with the advancement of microfabrication technology, more and more investigations have been performed in recent years to understand the influence of microstructures on radiative properties. The key to the enhancement of performance is through the modification of the reflection and transmission properties of electromagnetic waves and thermal emission spectra using one-, two-, or three-dimensional micro/nanostructures. This review focuses on recent developments in metamaterials–manmade materials with exotic optical properties, and other nanostructured materials, such as gratings and photonic crystals, for application in radiative energy transfer and energy conversion systems.

Keywords

metamaterial / nanostructured material / thermal radiative property / radiative energy transfer

Cite this article

Download citation ▾
Ceji FU, Zhuomin M. ZHANG. Thermal radiative properties of metamaterials and other nanostructured materials: A review. Front Energ Power Eng Chin, 2009, 3(1): 11‒26 https://doi.org/10.1007/s11708-009-0009-x

References

[1]
Sharma A K, Zaidi S H, Logofatu P C, . Optical and electrical properties of nanostructured metal-silicon-metal photodetectors. IEEE Journal of Quantum Electronics, 2002, 38(12): 1651-1660
CrossRef Google scholar
[2]
Boueke A, Kuhn R, Fath P, . Latest results on semitransparent POWER silicon solar cells. Solar Energy Materials and Solar Cells, 2001, 65(1–4): 549-553
CrossRef Google scholar
[3]
Zhang Q-C. Recent progress in high-temperature solar selective coatings. Solar Energy Materials and Solar Cells, 2000, 62(1–2): 63-74
CrossRef Google scholar
[4]
Coutts T J. A review of progress in thermophotovoltaic generation of electricity. Renewable and Sustainable Energy Reviews, 1999, 3(2): 77-184
CrossRef Google scholar
[5]
Heinzel A, Boerner V, Gombert A, . Radiation filters and emitters for the NIR based on periodically structured metal surfaces. Journal of Modern Optics, 2000, 47(13): 2399-2419
[6]
Sai H, Yugami H, Akiyama Y, . Spectral control of thermal emission by periodic microstructured surfaces in the near-infrared region. Journal of the Optical Society of America A, 2001, 18(7): 1471-1476
CrossRef Google scholar
[7]
Lin S Y, Moreno J, Fleming J G. Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation. Applied Physics Letters, 2003, 83(2): 380-382
CrossRef Google scholar
[8]
Timans P J, Sharangpani R, Thakur R P S. Rapid thermal processing. Handbook of Semiconductor Manufacturing Technology. Marcel Dekker, New York, 2000, 201-286
[9]
Zhang Z M. Surface temperature measurement using optical techniques. Annual Review of Heat Transfer (C.L. Tien, ed). Begell House, New York, 2000, 351-411
[10]
Naqvi S S H, Krukar R H, McNeil J R, . Etch depth estimation of large-period silicon gratings with multivariate calibration of rigorously simulated diffraction profiles. Journal of the Optical Society of America A, 1994, 11(9): 2485-2493
CrossRef Google scholar
[11]
Coulombe S A, Minhas B K, Raymond C J, . Scatterometry measurement of sub-0.1 μm linewidth Gratings. Journal of Vacuum Science and Technology B, 1998, 16(1): 80-87
CrossRef Google scholar
[12]
Greffet J-J, Carminati R, Joulain K, . Coherent emission of light by thermal sources. Nature, 2002, 416(6876): 61-64
CrossRef Google scholar
[13]
Marquier F, Joulain K, Mulet J-P, . Coherent spontaneous emission of light by thermal sources. Physical Review B, 2004, 69(15): 155412
CrossRef Google scholar
[14]
Lezec H J, Degiron A, Devaux E, . Beam light from a subwavelength aperture. Science, 2002, 297(5582): 820-822
CrossRef Google scholar
[15]
Shelby R A, Smith D R, Schultz S. Experimental verification of a negative index of refraction. Science, 2001, 292(5514): 77-79
CrossRef Google scholar
[16]
Engheta N, Ziolkowski R W, eds. Electromagnetic Metamaterials: Physics and Engineering Explorations. Wiley-IEEE Press, New York, 2006
[17]
Soukoulis C M, Linden S, Wegener M. Negative refractive index at optical wavelengths. Science, 2007, 315(5808): 47-49
CrossRef Google scholar
[18]
Shalaev V M. Optical negative-index metamaterials. Nature Photonics, 2007, 1(1): 41-48
CrossRef Google scholar
[19]
Valentine J, Zhang S, Zentgraf T, . Three-dimensional optical metamaterial with a negative refractive index. Nature, 2008, 455(7211): 376-379
CrossRef Google scholar
[20]
Zhang Z M, Fu C J, Zhu Q Z. Optical and radiative properties of semiconductors related to micro/nanotechnology. Advances in Heat Transfer, 2003, 37: 179-296
[21]
Veselago V G. The electrodynamics of substances with simultaneously negative values of ϵ and μ. Soviet Physics Uspekhi, 1968, 10(4): 509-514
CrossRef Google scholar
[22]
Pendry J B. Negative index makes a perfect lens. Physical Review Letters, 2000, 85(18): 3966-3969
CrossRef Google scholar
[23]
Ramakrishna S A. Physics of negative refractive index materials. Reports on Progress in Physics, 2005, 68(2): 449-521
CrossRef Google scholar
[24]
Fu C J. Radiative properties of emerging materials and radiation heat transfer at the nanoscale. Ph.D.dissertation, Georgia Institute of Technology, Atlanta, Georgia, USA, 2004
[25]
Zhang Z M. Nano/Microscale Heat Transfer. McGraw-Hill, New York, 2007
[26]
Pendry J B, Holden A J, Stewart W J, . Extremely low frequency plasmons in metallic mesostructures. Physical Review Letters, 1996, 76(25): 4773-4776
CrossRef Google scholar
[27]
Pendry J B, Holden A J, Rubbins D J, . Magnetism from conductors and enhanced nonlinear phenomena. IEEE Transactions on Microwave Theory and Techniques, 1999, 47(11): 2075-2084
CrossRef Google scholar
[28]
Reddick R C, Warmack R J, Ferrell T J. New form of scanning optical microcopy. Physical Review B, 1989. 39(1): 767-770
CrossRef Google scholar
[29]
Shen Y, Jakubczyk D, Xu F, . Two-photon fluorescence imaging and spectroscopy of nanostructure organic materials using a photon scanning tunneling microscope. Applied Physics Letters, 2000, 76(1): 1-3
CrossRef Google scholar
[30]
Fu C J, Zhang Z M. Nanoscale radiation heat transfer for silicon at different doping levels. International Journal of Heat and Mass Transfer, 2006, 49(9,10): 1703-1718
[31]
Whale M D, Cravalho E G. Modeling and performance of microscale thermophotovoltaic energy conversion devices. IEEE Transactions on Energy Conversion, 2002, 17(1): 130-142
CrossRef Google scholar
[32]
Narayanaswamy A, Chen G. Surface modes for near field thermophotovoltaics. Applied Physics Letters, 2003, 82(20): 3544-3546
CrossRef Google scholar
[33]
Raether H. Surface Plasmons on Smooth and Rough Surfaces and on Gratings. Berlin:Springer-Verlag, 1988
[34]
Rupin R. Surface polaritons of a left-handed medium. Physics Letters A, 2000, 277(1): 61-64
CrossRef Google scholar
[35]
Kawata S, ed. Near-field Optics and Surface Plasmon Polaritons. Berlin:Springer, 2001
[36]
Tominaga J, Tsai D P, eds. Optical Nanotechnologies-The Manipulation of Surface and Local Plasmons. Berlin:Springer, ,2003
[37]
Homola J, Yee S S, Gauglitz G. Surface plasmon resonance sensors: Review. Sensors and Actuators B, 1999, 54(1,2): 3-15
[38]
Hillenbrand R, Taubner T, Kellmann F. Phonon-enhanced light-matter interaction at the nanometer scale. Nature, 2002, 418(6894): 159–162; Hillenbrand R. Towards phonon photonics: Scattering-type near-field optical microscopy reveals phonon-enhanced near-field interaction. Ultramicroscopy, 2004, 100(3,4): 421-427
[39]
Maystre D, ed. Selected Papers on Diffraction Gratings. SPIE Milestone Series 83, The International Society for Optical Engineering, Bellingham, WA, 1993
[40]
Petit R, ed. Electromagnetic Theory of Gratings. Berlin:Springer, 1980
[41]
Chen Y-B, Zhang Z M, Timans P J. Radiative properties of patterned wafers with nanoscale linewidth. Journal of Heat Transfer, 2007, 129(1): 79-90
CrossRef Google scholar
[42]
Lee B J, Chen Y-B, Zhang Z M. Transmission enhancement through nanoscale metallic slit arrays from the visible to mid-infrared. Journal of Computational and Theoretical Nanoscience, 2008, 5(2): 201-213
[43]
Fu K, Chen Y-B, Hsu P-F, . Device scaling effect on the spectral-directional absorptance of wafer’s front side. International Journal of Heat and Mass Transfer, 2008, 51(19,20): 4911-4925
[44]
Joannopoulos J D, Meade R D, Winn J N. Photonic Crystals. Princeton, NJ:Princeton University Press, 1995
[45]
Sakoda K. Optical Properties of Photonic Crystals. Berlin:Springer-Verlag, 2001
[46]
Kitttel C. Introduction to Solid State Physics, 8th ed. New York:Wiley, 2004
[47]
Macleod H A. Thin Film Optical Filters, 3rd ed. Bristol, UK:Institute of Physics, 2001
[48]
Yeh P. Optical Waves in Layered Media. Wiley, New York, 1988; Yeh P, Yariv A, Hong C S. Electromagnetic propagation in periodic stratified media. I. General theory. Journal of the Optical Society of America, 1977, 67(4): 423-438
CrossRef Google scholar
[49]
Zhang Z M, Fu C J. Unusual photon tunneling in the presence of a layer with a negative refractive index. Applied Physics Letters, 2002, 80(6): 1097-1099
CrossRef Google scholar
[50]
Fu C J, Zhang, Z M. Transmission enhancement using a negative-refraction layer. Microscale Thermophysical Engineering, 2003, 7(3): 221-234
CrossRef Google scholar
[51]
Fu C J, Zhang Z M, Tanner D B. Energy transmission by photon tunneling in multilayer structures including negative index materials. Journal of Heat Transfer, 2005, 127(9): 1046-1052
CrossRef Google scholar
[52]
Park K, Lee B J, Fu C J, . Study of the surface and bulk polaritons with a negative index metamaterials. Journal of the Optical Society of America B, 2005, 22(5): 1016-1023
CrossRef Google scholar
[53]
Liu Z, Hu L, Lin Z. Enhancing photon tunneling by a slab of uniaxially anisotropic left-handed material. Physics Letters A, 2003, 308(4): 294-301
CrossRef Google scholar
[54]
Gao L, Tang C J. Near-field imaging by a multi-layer structure consisting of alternate right-handed and left-handed materials. Physics Letters A, 2004, 322(5,6): 390-395
[55]
Kim K-Y. Photon tunneling in composite layers of negative- and positive-index media. Physical Review E, 2004, 70(4): 047603
CrossRef Google scholar
[56]
Chen Y-Y, Huang Z-M, Wang Q, . Photon tunneling in one-dimensional metamaterial photonic crystals. Journal of Optics A: Pure and Applied Optics, 2005, 7(9): 519-524
CrossRef Google scholar
[57]
Fang Y-T, Zhou J, Pun E Y B. High-Q filters based on one-dimensional photonic crystals using epsilon-negative materials. Applied Physics B, 2007, 86(4): 587-591
CrossRef Google scholar
[58]
Siegel R, Howell J R. Thermal Radiation Heat Transfer, 4th ed. New York: Taylor and Francis , 2002
[59]
Hesketh P J, Zemel J N, Gebhart B. Organ pipe radiant modes of periodic micromachined silicon surfaces. Nature, 1986, 324: 549-551
CrossRef Google scholar
[60]
Hesketh P J, Gebhart B, Zemel J N. Measurements of the spectral and directional emission from microgrooved silicon surfaces. Journal of Heat Transfer, 1988, 110(3): 680-686
[61]
Dimenna R A, Buckius R O. Electromagnetic theory predictions of the directional scattering from triangular surfaces. Journal of Heat Transfer, 1994, 116(3): 639-645
CrossRef Google scholar
[62]
Tang K, Buckius R O. Bi-directional reflection measurements from two-dimensional microcontoured metallic surfaces. Microscale Thermophysical Engineering, 1998, 2(4): 245-260
CrossRef Google scholar
[63]
Sai H, Yugami H, Kanamori Y, . Spectrally selective thermal radiators and absorbers with periodic microstructured surfaces for high-temperature applications. Microscale Thermophysical Engineering, 2003, 7(2): 101-115
CrossRef Google scholar
[64]
Seager C H, Sinclair M B, Fleming J G. Accurate measurements of thermal radiation from a tungsten photonic lattice. Applied Physics Letters, 2005, 86(24): 244105
CrossRef Google scholar
[65]
Chen Y-B, Zhu Q Z, Wright T L, . Bidirectional reflection measurements of periodically microstructured silicon surfaces. International Journal of Thermophysics, 2004, 25(4): 1235-1252
CrossRef Google scholar
[66]
Kreiter M, Oster J, Sambles R, . Thermally induced emission of light from a metallic diffraction grating, mediated by surface plasmons. Optics Communications, 1999, 168(1-4): 117-122
CrossRef Google scholar
[67]
Fu C J, Zhang Z M, Tanner D B. Planar heterogeneous structures for coherent emission of radiation. Optics Letters, 2005, 30(14): 1873-1875
CrossRef Google scholar
[68]
Fu C J, Zhang Z M. Further investigation of coherent thermal emission from single negative materials. Nanoscale and Microscale Thermophysical Engineering, 2008, 12(1): 83-97
CrossRef Google scholar
[69]
Smith D R, Padilla W J, Vier D C, . Composite medium with simultaneously negative permeability and permittivity. Physical Review Letters, 2000, 84(18): 4184-4187
CrossRef Google scholar
[70]
Yen T J, Padilla W J, Fang N, . Terahertz magnetic response from artificial materials. Science, 2004, 303(5663): 1494-1496
CrossRef Google scholar
[71]
Linden S, Enkrich C, Wegener M, . Magnetic response of metamaterials at 100 terahertz. Science, 2004, 306(5700): 1351-1353
CrossRef Google scholar
[72]
Enkrich C, Wegener M, Linden S, . Magnetic metamaterials at telecommunication and visible frequencies. Physical Review Letters, 2005, 95(20): 203901
CrossRef Google scholar
[73]
Lagarkov A N, Sarychev A K. Electromagnetic properties of composites containing elongated conducting inclusions. Physical Review B, 1996, 53(10): 6318-6336
CrossRef Google scholar
[74]
Podolskiy V A, Sarychev A K, Shalaev V M. Plasmon modes in metal nanowires and left-handed materials. Journal of Nonlinear Optical Physics and Materials, 2002, 11(1): 65-74
CrossRef Google scholar
[75]
Dolling D, Enkrich C, Wegener M, . Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials. Optics Letters, 2005, 30(23): 3198-3200
CrossRef Google scholar
[76]
Shalaev V M, Cai W S, Chettiar U K, . Negative index of refraction in optical metamaterials. Optics Letters, 2005, 30(24): 3356-3358
CrossRef Google scholar
[77]
Zhou J F, Zhang L, Tuttle G, . Negative index materials using simple short wire pairs. Physical Review B, 2006, 73(4): 041101(R)
CrossRef Google scholar
[78]
Yuan H K, Chettiar U K, Cai W S, . A negative permeability material at red light. Optics Express, 2007, 15(3): 1076-1083
CrossRef Google scholar
[79]
Zhang S, Fan W J, Panoiu N C, . Experimental demonstration of near-infrared negative-index metamaterials. Physical Review Letters, 2005, 95(13): 137404
CrossRef Google scholar
[80]
Dolling G, Enkrich C, Wegener M, . Simultaneous negative phase and group velocity of light in a metamaterial. Science, 2006, 312(5775): 892-894
CrossRef Google scholar
[81]
Lee B J, Wang L P, Zhang Z M. Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film. Optics Express, 2008, 16(15): 11328-11336
CrossRef Google scholar
[82]
Li T, Wang S M, Liu H, . Dispersion of magnetic plasmon polaritons in perforated trilayer metamaterials. Journal of Applied Physics, 2008, 103(2): 023104
CrossRef Google scholar
[83]
Basu S, Chen Y-B, Zhang Z M. Microscale radaition in thermophotovoltaic devices- a review. International Journal of Energy Research, 2007, 31(6,7): 689-716
[84]
Sai H, Kanamori Y, Yugami H. Tuning of the thermal radiation spectrum in the near-infrared region by metallic surface microstructures. Journal of Micromechanics and Microengineering, 2005, 15(9): S243-S249
CrossRef Google scholar
[85]
Chen Y-B, Zhang Z M. Design of tungsten complex gratings for thermophotovoltaic radiatiors. Optics Communications, 2007, 269(2): 411-417
CrossRef Google scholar
[86]
Chen Y-B, Zhang Z M. Heavily doped silicon complex gratings as wavelength selective absorbing surfaces. Journal of Physics D: Applied Physics, 2008, 41(9): 095406
CrossRef Google scholar
[87]
Fu C J, Tan W C. Semiconductor Thin Films Combined with Metallic Grating for Selective Improvement of Thermal Radiative Absorption/Emission. Journal of Heat Transfer (In press)
[88]
Erofeev A F, Kolpakov A V, Makhviladze T M, . Comprehensive RTP modeling and simulation. Proceedings of the 3rd International Rapid Thermal Processing Conference, 1995, 181-197
[89]
Hebb J P, Jensen K F. The effect of patterns on thermal stress during rapid thermal processing of silicon wafers. IEEE Transactions on Semiconductor Manufacturing, 1998, 11(1): 99-107
CrossRef Google scholar
[90]
Tada H, Abramson A R, Mann S E, . Evaluating the effects of thin film patterns on the temperature distribution of silicon wafers during radiant processing. Optical Engineering, 2000, 39(8): 2296-2304
CrossRef Google scholar
[91]
Liu J, Zhang S J, Chen Y S. Rigorous electromagnetic modeling of radiative interactions with microstructures using the finite volume time-domain method. International Journal of Thermophysics, 2004, 25(4): 1281-1297
CrossRef Google scholar
[92]
Ebbesen T W, Lezec H J, Ghaemi H F, . Extraordinary optical transmission through sub-wavelength hole arrays. Nature, 1988, 391(6668): 667-669
CrossRef Google scholar
[93]
Porto J A, Garcia-Vidal F J, Pendry J B. Transmission resonances on metallic gratings with very narrow slits. Physical Review Letters, 1999, 83(14): 2845-2848
CrossRef Google scholar
[94]
Marquier F, Greffet J-J, Collin S, . Resonant transmission through a metallic film due to coupled modes. Opt Express, 2005, 13(1): 70-76
CrossRef Google scholar
[95]
García-Vidal F J, Martín-Moreno L. Transmission and focusing of light in one-dimensional periodically nanostructured metals. Physical Review B, 2002, 66(15): 155412
CrossRef Google scholar
[96]
Yuan G-H, Wang P, Zhang D-G, . Extraordinary transmission through metallic grating with subwavelength slits for s-polarization illumination. Chinese Physics Letters, 2007, 24(6): 1600-1602
CrossRef Google scholar
[97]
Li L. Use of Fourier series in the analysis of discontinuous periodic structures. Journal of the Optical Society of America A, 1996, 13(9): 1870-1876
CrossRef Google scholar
[98]
Lee B J, Chen Y-B, Zhang Z M. Confinement of infrared radiation to nanometer scales through metallic slit arrays. Journal of Quantitative Spectroscopy and Radiative Transfer, 2008, 109(4): 608-619
CrossRef Google scholar
[99]
Chen Y-B, Lee B J, Zhang Z M. Infrared radiative properties of submicron metallic slit arrays. Journal of Heat Transfer, 2008, 130(8): 082404
CrossRef Google scholar
[100]
Chan D L C, Soljacic M, Joannopoulos J D. Direct calculation of thermal emission for three-dimensionally periodic photonic crystal slabs. Physical Review E, 2006, 74(3): 036615
CrossRef Google scholar
[101]
Narayanaswamy A, Chen G. Thermal emission control with one-dimensional metallodielectric photonic crystals. Physical Review B, 2004, 70(12): 125101
CrossRef Google scholar
[102]
Enoch S, Simon J J, Escoubas L, . Simple layer-by-layer photonic crystal for the control of thermal emission. Applied Physics Letters, 2005, 86(26): 261101.
CrossRef Google scholar
[103]
Huang X, Wang D, Prakash P, Singh J. Design of computational analysis of highly reflective multiple layered thermal barrier coating structure. Materials Science and Engineering A, 2007, 460-461: 101-110
CrossRef Google scholar
[104]
Gaspar-Armenta J A, Villa F. Photonic surface-wave excitation: photonic crystal-metal interface. Journal of the Optical Society of America B, 2003, 20(11): 2349-2354
CrossRef Google scholar
[105]
Lee B J, Fu C J, Zhang Z M. Coherent thermal emission from one-dimensional photonic crystals. Applied Physics Letters, 2005, 879(7): 071904
CrossRef Google scholar
[106]
Lee B J, Zhang Z M. Coherent thermal emission from modified periodic multilayer structures. Journal of Heat Transfer, 2007, 129(1): 17-26
CrossRef Google scholar
[107]
Lee B J, Zhang Z M. Design and fabrication of planar multilayer structures with coherent thermal emission characteristics. Journal of Applied Physics, 2006, 100(6): 063529
CrossRef Google scholar
[108]
Lee B J, Chen Y-B, Zhang Z M. Surface waves between metallic films and truncated photonic crystals observed with reflectance spectroscopy. Optics Letters, 2008, 33(3): 204-206
CrossRef Google scholar
[109]
Lee B J, Zhang Z M. Indirect measurements of coherent thermal emission from a truncated photonic crystal structure. Journal of Thermophysics and Heat Transfer (accepted)
[110]
Laroche M, Carminati R, Greffet J-J. Coherent thermal antenna using a photonic crystal slab. Physical Review Letters, 2006, 96(12): 123903
CrossRef Google scholar
[111]
Chan D L C, Soljacic M, Joannopoulos J D. Thermal emission and design in 2D-periodic metallic photonic crystal slabs. Optics Express, 2006, 14(19): 8785-8796
CrossRef Google scholar
[112]
Drevillon J, Ben-Abdallah P. Ab initio design of coherent thermal sources. Journal of Applied Physics, 2007, 102(11): 114305
CrossRef Google scholar
[113]
Battula A, Chen S C. Monochromatic polarized coherent emitter enhanced by surface plasmons and a cavity resonance. Physical Review B, 2006, 74(24): 245407
CrossRef Google scholar
[114]
Lin K-Q, Wei L-M, Zhang D-G, . Temperature effects on prism-based surface plasmon resonance sensor. Chinese Physics Letters, 2007, 24(11): 3081-3084
CrossRef Google scholar

Acknowledgements

C. J. Fu thanks the financial support from the National Natural Science Foundation of China (Grant No. 50606001). Z. M. Zhang thanks the support from the US Department of Energy (DE-FG02-06ER46343) and the US National Science Foundation (CBET-0500113).

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(526 KB)

Accesses

Citations

Detail

Sections
Recommended

/