Thermal radiative properties of metamaterials and other nanostructured materials: A review
Ceji FU, Zhuomin M. ZHANG
Thermal radiative properties of metamaterials and other nanostructured materials: A review
The ability to manufacture, control, and manipulate structures at extremely small scales is the hallmark of modern technologies, including microelectronics, MEMS/NEMS, and nano-biotechnology. Along with the advancement of microfabrication technology, more and more investigations have been performed in recent years to understand the influence of microstructures on radiative properties. The key to the enhancement of performance is through the modification of the reflection and transmission properties of electromagnetic waves and thermal emission spectra using one-, two-, or three-dimensional micro/nanostructures. This review focuses on recent developments in metamaterials–manmade materials with exotic optical properties, and other nanostructured materials, such as gratings and photonic crystals, for application in radiative energy transfer and energy conversion systems.
metamaterial / nanostructured material / thermal radiative property / radiative energy transfer
[1] |
Sharma A K, Zaidi S H, Logofatu P C,
CrossRef
Google scholar
|
[2] |
Boueke A, Kuhn R, Fath P,
CrossRef
Google scholar
|
[3] |
Zhang Q-C. Recent progress in high-temperature solar selective coatings. Solar Energy Materials and Solar Cells, 2000, 62(1–2): 63-74
CrossRef
Google scholar
|
[4] |
Coutts T J. A review of progress in thermophotovoltaic generation of electricity. Renewable and Sustainable Energy Reviews, 1999, 3(2): 77-184
CrossRef
Google scholar
|
[5] |
Heinzel A, Boerner V, Gombert A,
|
[6] |
Sai H, Yugami H, Akiyama Y,
CrossRef
Google scholar
|
[7] |
Lin S Y, Moreno J, Fleming J G. Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation. Applied Physics Letters, 2003, 83(2): 380-382
CrossRef
Google scholar
|
[8] |
Timans P J, Sharangpani R, Thakur R P S. Rapid thermal processing. Handbook of Semiconductor Manufacturing Technology. Marcel Dekker, New York, 2000, 201-286
|
[9] |
Zhang Z M. Surface temperature measurement using optical techniques. Annual Review of Heat Transfer (C.L. Tien, ed). Begell House, New York, 2000, 351-411
|
[10] |
Naqvi S S H, Krukar R H, McNeil J R,
CrossRef
Google scholar
|
[11] |
Coulombe S A, Minhas B K, Raymond C J,
CrossRef
Google scholar
|
[12] |
Greffet J-J, Carminati R, Joulain K,
CrossRef
Google scholar
|
[13] |
Marquier F, Joulain K, Mulet J-P,
CrossRef
Google scholar
|
[14] |
Lezec H J, Degiron A, Devaux E,
CrossRef
Google scholar
|
[15] |
Shelby R A, Smith D R, Schultz S. Experimental verification of a negative index of refraction. Science, 2001, 292(5514): 77-79
CrossRef
Google scholar
|
[16] |
Engheta N, Ziolkowski R W, eds. Electromagnetic Metamaterials: Physics and Engineering Explorations. Wiley-IEEE Press, New York, 2006
|
[17] |
Soukoulis C M, Linden S, Wegener M. Negative refractive index at optical wavelengths. Science, 2007, 315(5808): 47-49
CrossRef
Google scholar
|
[18] |
Shalaev V M. Optical negative-index metamaterials. Nature Photonics, 2007, 1(1): 41-48
CrossRef
Google scholar
|
[19] |
Valentine J, Zhang S, Zentgraf T,
CrossRef
Google scholar
|
[20] |
Zhang Z M, Fu C J, Zhu Q Z. Optical and radiative properties of semiconductors related to micro/nanotechnology. Advances in Heat Transfer, 2003, 37: 179-296
|
[21] |
Veselago V G. The electrodynamics of substances with simultaneously negative values of ϵ and μ. Soviet Physics Uspekhi, 1968, 10(4): 509-514
CrossRef
Google scholar
|
[22] |
Pendry J B. Negative index makes a perfect lens. Physical Review Letters, 2000, 85(18): 3966-3969
CrossRef
Google scholar
|
[23] |
Ramakrishna S A. Physics of negative refractive index materials. Reports on Progress in Physics, 2005, 68(2): 449-521
CrossRef
Google scholar
|
[24] |
Fu C J. Radiative properties of emerging materials and radiation heat transfer at the nanoscale. Ph.D.dissertation, Georgia Institute of Technology, Atlanta, Georgia, USA, 2004
|
[25] |
Zhang Z M. Nano/Microscale Heat Transfer. McGraw-Hill, New York, 2007
|
[26] |
Pendry J B, Holden A J, Stewart W J,
CrossRef
Google scholar
|
[27] |
Pendry J B, Holden A J, Rubbins D J,
CrossRef
Google scholar
|
[28] |
Reddick R C, Warmack R J, Ferrell T J. New form of scanning optical microcopy. Physical Review B, 1989. 39(1): 767-770
CrossRef
Google scholar
|
[29] |
Shen Y, Jakubczyk D, Xu F,
CrossRef
Google scholar
|
[30] |
Fu C J, Zhang Z M. Nanoscale radiation heat transfer for silicon at different doping levels. International Journal of Heat and Mass Transfer, 2006, 49(9,10): 1703-1718
|
[31] |
Whale M D, Cravalho E G. Modeling and performance of microscale thermophotovoltaic energy conversion devices. IEEE Transactions on Energy Conversion, 2002, 17(1): 130-142
CrossRef
Google scholar
|
[32] |
Narayanaswamy A, Chen G. Surface modes for near field thermophotovoltaics. Applied Physics Letters, 2003, 82(20): 3544-3546
CrossRef
Google scholar
|
[33] |
Raether H. Surface Plasmons on Smooth and Rough Surfaces and on Gratings. Berlin:Springer-Verlag, 1988
|
[34] |
Rupin R. Surface polaritons of a left-handed medium. Physics Letters A, 2000, 277(1): 61-64
CrossRef
Google scholar
|
[35] |
Kawata S, ed. Near-field Optics and Surface Plasmon Polaritons. Berlin:Springer, 2001
|
[36] |
Tominaga J, Tsai D P, eds. Optical Nanotechnologies-The Manipulation of Surface and Local Plasmons. Berlin:Springer, ,2003
|
[37] |
Homola J, Yee S S, Gauglitz G. Surface plasmon resonance sensors: Review. Sensors and Actuators B, 1999, 54(1,2): 3-15
|
[38] |
Hillenbrand R, Taubner T, Kellmann F. Phonon-enhanced light-matter interaction at the nanometer scale. Nature, 2002, 418(6894): 159–162; Hillenbrand R. Towards phonon photonics: Scattering-type near-field optical microscopy reveals phonon-enhanced near-field interaction. Ultramicroscopy, 2004, 100(3,4): 421-427
|
[39] |
Maystre D, ed. Selected Papers on Diffraction Gratings. SPIE Milestone Series 83, The International Society for Optical Engineering, Bellingham, WA, 1993
|
[40] |
Petit R, ed. Electromagnetic Theory of Gratings. Berlin:Springer, 1980
|
[41] |
Chen Y-B, Zhang Z M, Timans P J. Radiative properties of patterned wafers with nanoscale linewidth. Journal of Heat Transfer, 2007, 129(1): 79-90
CrossRef
Google scholar
|
[42] |
Lee B J, Chen Y-B, Zhang Z M. Transmission enhancement through nanoscale metallic slit arrays from the visible to mid-infrared. Journal of Computational and Theoretical Nanoscience, 2008, 5(2): 201-213
|
[43] |
Fu K, Chen Y-B, Hsu P-F,
|
[44] |
Joannopoulos J D, Meade R D, Winn J N. Photonic Crystals. Princeton, NJ:Princeton University Press, 1995
|
[45] |
Sakoda K. Optical Properties of Photonic Crystals. Berlin:Springer-Verlag, 2001
|
[46] |
Kitttel C. Introduction to Solid State Physics, 8th ed. New York:Wiley, 2004
|
[47] |
Macleod H A. Thin Film Optical Filters, 3rd ed. Bristol, UK:Institute of Physics, 2001
|
[48] |
Yeh P. Optical Waves in Layered Media. Wiley, New York, 1988; Yeh P, Yariv A, Hong C S. Electromagnetic propagation in periodic stratified media. I. General theory. Journal of the Optical Society of America, 1977, 67(4): 423-438
CrossRef
Google scholar
|
[49] |
Zhang Z M, Fu C J. Unusual photon tunneling in the presence of a layer with a negative refractive index. Applied Physics Letters, 2002, 80(6): 1097-1099
CrossRef
Google scholar
|
[50] |
Fu C J, Zhang, Z M. Transmission enhancement using a negative-refraction layer. Microscale Thermophysical Engineering, 2003, 7(3): 221-234
CrossRef
Google scholar
|
[51] |
Fu C J, Zhang Z M, Tanner D B. Energy transmission by photon tunneling in multilayer structures including negative index materials. Journal of Heat Transfer, 2005, 127(9): 1046-1052
CrossRef
Google scholar
|
[52] |
Park K, Lee B J, Fu C J,
CrossRef
Google scholar
|
[53] |
Liu Z, Hu L, Lin Z. Enhancing photon tunneling by a slab of uniaxially anisotropic left-handed material. Physics Letters A, 2003, 308(4): 294-301
CrossRef
Google scholar
|
[54] |
Gao L, Tang C J. Near-field imaging by a multi-layer structure consisting of alternate right-handed and left-handed materials. Physics Letters A, 2004, 322(5,6): 390-395
|
[55] |
Kim K-Y. Photon tunneling in composite layers of negative- and positive-index media. Physical Review E, 2004, 70(4): 047603
CrossRef
Google scholar
|
[56] |
Chen Y-Y, Huang Z-M, Wang Q,
CrossRef
Google scholar
|
[57] |
Fang Y-T, Zhou J, Pun E Y B. High-Q filters based on one-dimensional photonic crystals using epsilon-negative materials. Applied Physics B, 2007, 86(4): 587-591
CrossRef
Google scholar
|
[58] |
Siegel R, Howell J R. Thermal Radiation Heat Transfer, 4th ed. New York: Taylor and Francis , 2002
|
[59] |
Hesketh P J, Zemel J N, Gebhart B. Organ pipe radiant modes of periodic micromachined silicon surfaces. Nature, 1986, 324: 549-551
CrossRef
Google scholar
|
[60] |
Hesketh P J, Gebhart B, Zemel J N. Measurements of the spectral and directional emission from microgrooved silicon surfaces. Journal of Heat Transfer, 1988, 110(3): 680-686
|
[61] |
Dimenna R A, Buckius R O. Electromagnetic theory predictions of the directional scattering from triangular surfaces. Journal of Heat Transfer, 1994, 116(3): 639-645
CrossRef
Google scholar
|
[62] |
Tang K, Buckius R O. Bi-directional reflection measurements from two-dimensional microcontoured metallic surfaces. Microscale Thermophysical Engineering, 1998, 2(4): 245-260
CrossRef
Google scholar
|
[63] |
Sai H, Yugami H, Kanamori Y,
CrossRef
Google scholar
|
[64] |
Seager C H, Sinclair M B, Fleming J G. Accurate measurements of thermal radiation from a tungsten photonic lattice. Applied Physics Letters, 2005, 86(24): 244105
CrossRef
Google scholar
|
[65] |
Chen Y-B, Zhu Q Z, Wright T L,
CrossRef
Google scholar
|
[66] |
Kreiter M, Oster J, Sambles R,
CrossRef
Google scholar
|
[67] |
Fu C J, Zhang Z M, Tanner D B. Planar heterogeneous structures for coherent emission of radiation. Optics Letters, 2005, 30(14): 1873-1875
CrossRef
Google scholar
|
[68] |
Fu C J, Zhang Z M. Further investigation of coherent thermal emission from single negative materials. Nanoscale and Microscale Thermophysical Engineering, 2008, 12(1): 83-97
CrossRef
Google scholar
|
[69] |
Smith D R, Padilla W J, Vier D C,
CrossRef
Google scholar
|
[70] |
Yen T J, Padilla W J, Fang N,
CrossRef
Google scholar
|
[71] |
Linden S, Enkrich C, Wegener M,
CrossRef
Google scholar
|
[72] |
Enkrich C, Wegener M, Linden S,
CrossRef
Google scholar
|
[73] |
Lagarkov A N, Sarychev A K. Electromagnetic properties of composites containing elongated conducting inclusions. Physical Review B, 1996, 53(10): 6318-6336
CrossRef
Google scholar
|
[74] |
Podolskiy V A, Sarychev A K, Shalaev V M. Plasmon modes in metal nanowires and left-handed materials. Journal of Nonlinear Optical Physics and Materials, 2002, 11(1): 65-74
CrossRef
Google scholar
|
[75] |
Dolling D, Enkrich C, Wegener M,
CrossRef
Google scholar
|
[76] |
Shalaev V M, Cai W S, Chettiar U K,
CrossRef
Google scholar
|
[77] |
Zhou J F, Zhang L, Tuttle G,
CrossRef
Google scholar
|
[78] |
Yuan H K, Chettiar U K, Cai W S,
CrossRef
Google scholar
|
[79] |
Zhang S, Fan W J, Panoiu N C,
CrossRef
Google scholar
|
[80] |
Dolling G, Enkrich C, Wegener M,
CrossRef
Google scholar
|
[81] |
Lee B J, Wang L P, Zhang Z M. Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film. Optics Express, 2008, 16(15): 11328-11336
CrossRef
Google scholar
|
[82] |
Li T, Wang S M, Liu H,
CrossRef
Google scholar
|
[83] |
Basu S, Chen Y-B, Zhang Z M. Microscale radaition in thermophotovoltaic devices- a review. International Journal of Energy Research, 2007, 31(6,7): 689-716
|
[84] |
Sai H, Kanamori Y, Yugami H. Tuning of the thermal radiation spectrum in the near-infrared region by metallic surface microstructures. Journal of Micromechanics and Microengineering, 2005, 15(9): S243-S249
CrossRef
Google scholar
|
[85] |
Chen Y-B, Zhang Z M. Design of tungsten complex gratings for thermophotovoltaic radiatiors. Optics Communications, 2007, 269(2): 411-417
CrossRef
Google scholar
|
[86] |
Chen Y-B, Zhang Z M. Heavily doped silicon complex gratings as wavelength selective absorbing surfaces. Journal of Physics D: Applied Physics, 2008, 41(9): 095406
CrossRef
Google scholar
|
[87] |
Fu C J, Tan W C. Semiconductor Thin Films Combined with Metallic Grating for Selective Improvement of Thermal Radiative Absorption/Emission. Journal of Heat Transfer (In press)
|
[88] |
Erofeev A F, Kolpakov A V, Makhviladze T M,
|
[89] |
Hebb J P, Jensen K F. The effect of patterns on thermal stress during rapid thermal processing of silicon wafers. IEEE Transactions on Semiconductor Manufacturing, 1998, 11(1): 99-107
CrossRef
Google scholar
|
[90] |
Tada H, Abramson A R, Mann S E,
CrossRef
Google scholar
|
[91] |
Liu J, Zhang S J, Chen Y S. Rigorous electromagnetic modeling of radiative interactions with microstructures using the finite volume time-domain method. International Journal of Thermophysics, 2004, 25(4): 1281-1297
CrossRef
Google scholar
|
[92] |
Ebbesen T W, Lezec H J, Ghaemi H F,
CrossRef
Google scholar
|
[93] |
Porto J A, Garcia-Vidal F J, Pendry J B. Transmission resonances on metallic gratings with very narrow slits. Physical Review Letters, 1999, 83(14): 2845-2848
CrossRef
Google scholar
|
[94] |
Marquier F, Greffet J-J, Collin S,
CrossRef
Google scholar
|
[95] |
García-Vidal F J, Martín-Moreno L. Transmission and focusing of light in one-dimensional periodically nanostructured metals. Physical Review B, 2002, 66(15): 155412
CrossRef
Google scholar
|
[96] |
Yuan G-H, Wang P, Zhang D-G,
CrossRef
Google scholar
|
[97] |
Li L. Use of Fourier series in the analysis of discontinuous periodic structures. Journal of the Optical Society of America A, 1996, 13(9): 1870-1876
CrossRef
Google scholar
|
[98] |
Lee B J, Chen Y-B, Zhang Z M. Confinement of infrared radiation to nanometer scales through metallic slit arrays. Journal of Quantitative Spectroscopy and Radiative Transfer, 2008, 109(4): 608-619
CrossRef
Google scholar
|
[99] |
Chen Y-B, Lee B J, Zhang Z M. Infrared radiative properties of submicron metallic slit arrays. Journal of Heat Transfer, 2008, 130(8): 082404
CrossRef
Google scholar
|
[100] |
Chan D L C, Soljacic M, Joannopoulos J D. Direct calculation of thermal emission for three-dimensionally periodic photonic crystal slabs. Physical Review E, 2006, 74(3): 036615
CrossRef
Google scholar
|
[101] |
Narayanaswamy A, Chen G. Thermal emission control with one-dimensional metallodielectric photonic crystals. Physical Review B, 2004, 70(12): 125101
CrossRef
Google scholar
|
[102] |
Enoch S, Simon J J, Escoubas L,
CrossRef
Google scholar
|
[103] |
Huang X, Wang D, Prakash P, Singh J. Design of computational analysis of highly reflective multiple layered thermal barrier coating structure. Materials Science and Engineering A, 2007, 460-461: 101-110
CrossRef
Google scholar
|
[104] |
Gaspar-Armenta J A, Villa F. Photonic surface-wave excitation: photonic crystal-metal interface. Journal of the Optical Society of America B, 2003, 20(11): 2349-2354
CrossRef
Google scholar
|
[105] |
Lee B J, Fu C J, Zhang Z M. Coherent thermal emission from one-dimensional photonic crystals. Applied Physics Letters, 2005, 879(7): 071904
CrossRef
Google scholar
|
[106] |
Lee B J, Zhang Z M. Coherent thermal emission from modified periodic multilayer structures. Journal of Heat Transfer, 2007, 129(1): 17-26
CrossRef
Google scholar
|
[107] |
Lee B J, Zhang Z M. Design and fabrication of planar multilayer structures with coherent thermal emission characteristics. Journal of Applied Physics, 2006, 100(6): 063529
CrossRef
Google scholar
|
[108] |
Lee B J, Chen Y-B, Zhang Z M. Surface waves between metallic films and truncated photonic crystals observed with reflectance spectroscopy. Optics Letters, 2008, 33(3): 204-206
CrossRef
Google scholar
|
[109] |
Lee B J, Zhang Z M. Indirect measurements of coherent thermal emission from a truncated photonic crystal structure. Journal of Thermophysics and Heat Transfer (accepted)
|
[110] |
Laroche M, Carminati R, Greffet J-J. Coherent thermal antenna using a photonic crystal slab. Physical Review Letters, 2006, 96(12): 123903
CrossRef
Google scholar
|
[111] |
Chan D L C, Soljacic M, Joannopoulos J D. Thermal emission and design in 2D-periodic metallic photonic crystal slabs. Optics Express, 2006, 14(19): 8785-8796
CrossRef
Google scholar
|
[112] |
Drevillon J, Ben-Abdallah P. Ab initio design of coherent thermal sources. Journal of Applied Physics, 2007, 102(11): 114305
CrossRef
Google scholar
|
[113] |
Battula A, Chen S C. Monochromatic polarized coherent emitter enhanced by surface plasmons and a cavity resonance. Physical Review B, 2006, 74(24): 245407
CrossRef
Google scholar
|
[114] |
Lin K-Q, Wei L-M, Zhang D-G,
CrossRef
Google scholar
|
/
〈 | 〉 |