REVIEW ARTICLE

Application of nanotechnologies in the energy sector: A brief and short review

  • Ferric CHRISTIAN ,
  • EDITH ,
  • SELLY ,
  • Dendy ADITYAWARMAN ,
  • Antonius INDARTO
Expand
  • Department of Chemical Engineering, Institut Teknologi Bandung, Bandung 40132, Indonesia

Received date: 18 Aug 2012

Accepted date: 31 Oct 2012

Published date: 05 Mar 2013

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Energy is of great importance in human life because of its benefits as the main resource for human activity. According to International Energy Agency (IEA), energy demands are expected to continue increasing until 2030. Because energy demand will never decrease, it is necessary to develop modern technology, such as nano-based technology, in order to obtain a more effective and efficient process to produce more energy. The application of nano technology or nano material in the field of energy, which involves lithium-ion battery, fuel cell, light emitting diode (LED), ultra-capacitor, and solar cell (including Grätzel cell), is a hot topic in many scientific researches. Unfortunately, its current development is hampered by the expensive cost of production compared to conventional technologies. Therefore, priority should be given to nano technology in the energy sector order to obtain higher efficiency, lower production cost, and easier in its application.

Cite this article

Ferric CHRISTIAN , EDITH , SELLY , Dendy ADITYAWARMAN , Antonius INDARTO . Application of nanotechnologies in the energy sector: A brief and short review[J]. Frontiers in Energy, 0 , 7(1) : 6 -18 . DOI: 10.1007/s11708-012-0219-5

Acknowledgements

Part of this work was supported by the KIST IRDA Alumni Program of the Korea Institute of Science and Technology (KIST), Seoul.
1
Energy Information Administration (EIA). International energy outlook.<day>2007</day>-<month>07</month>, http://www.eia.doe.gov/oiaf/ieo/index.html

2
Suehiro S. Energy Intensity of GDP as an Index of Energy Conservation. Institute of Energy Economics Japan Report. 2007

3
Berger M. Nanotechnology applications could provide the required energy breakthroughs. 2012-<month>06</month>-<day>05</day>, http://www.nanowerk.com/spotlight/spotid=7424.php

4
Joachim C. To be nano or not to be nano? Nature Materials, 2005, 4(2): 107–109

DOI PMID

5
Yunus I S, Harwin, Kurniawan A, Adityawarman D, Indarto A. Nanotechnologies in water and air pollution treatment. Environmental Technology Reviews, iFirst, 2012, 1–13

6
Hartono. Prospek penelitian dan pengembangan teknologi ketenagalistrikan dan energi baru terbarukan berbasis nanoteknologi. Mineral Energy, 2010, 8(1): 10–16

7
Luther W. Application of Nano-Technologies in the Energy Sector. Germany: Hessian Ministry of Economy, Transport, Urban and Regional Development, 2008

8
Tatsumisago M. Solid-state lithium batteries using glass electrolytes. 2012-<month>10</month>, http://rm1.cc.lehigh.edu:8080/dept/IMI/pdf_DC07/Tatsumisago.pdf

9
Zhao X, Hayner C M, Kung M C, Kung H H. In-plane vacancy-enabled high-power Si-graphene composite electrode for lithium-ion batteries. Advanced Energy Materials, 2011, 1(6): 1079– 1084

DOI

10
Bullis K. Higher-capacity lithium-ion batteries technology review. 2010-<month>06</month>-<day>11</day>, http://www.technologyreview.com/energy/17553/?a=f

11
Liang S, Zhu X, Lian P, Yang W, Wang H. Superior cycle performance of Sn@C/graphene nanocomposite as an anode material for lithium-ion batteries. Journal of Solid State Chemistry, 2011, 184(6): 1400–1404

DOI

12
Schroder K. Understanding the formation and composition of the solid-electrolyte interphase at silicon surfaces. 2012-<month>10</month>, http://webb.cm.utexas.edu/research/research_SEI.html

13
Nazri G A, Pistoia G. Lithium Batteries: Science and Technology. New York: Springer, 2003, 621–637

66
Rice B M. Jow T R. Energy€&€Energetics. U.S. Army Research Laboratory, 2012, <month>5</month>

14
Smithsonian Institution. Fuel cell basics. 2011-<month>11</month>-<day>24</day>http://americanhistory.si.edu/fuelcells/basics.htm

15
Antolini E, Perez J. The renaissance of unsupported nanostructured catalysts for low-temperature fuel cells: from the size to the shape of metal nanostructures. Journal of Materials Science, 2011, 46(13): 4435–4457

DOI

16
Guo S, Sun S. FePt nanoparticles assembled on graphene as enhanced catalyst for oxygen reduction reaction. Journal of the American Chemical Society, 2012, 134(5): 2492–2495

DOI PMID

17
Dai L, Chang D W, Baek J B, Lu W. Carbon nanomaterials for advanced energy conversion and storage. Small, 2012, 8(8): 1130–1166

DOI PMID

18
Chu K L, Gold S, Subramanian V, Lu C, Shannon M A, Masel R I. A nanoporous silicon membrane electrode assembly for on-chip micro fuel cell applications. Journal of Microelectromechanical Systems, 2006, 15(3): 671–677

DOI

19
Bagotsky V S. Fuel Cells in Electrochemistry Encyclopedia. Yeager Center for Electrochemical Sciences (YCES) Report, 2009

20
Sun S, Jaouen F, Dodelet J P. Controlled growth of Pt nanowires on carbon nanospheres and their enhanced performance as electrocatalysts in PEM fuel cells. Advanced Materials (Deerfield Beach, Fla.), 2008, 20(20): 3900–3904

DOI

21
Thomas S, Zalbowitz M. Fuel Cells—Green Power. New Mexico: Los Alamos National Laboratory, 2011

22
Bewag A. Energy moving into the future. The fuel cell: A technical report. 2012-<month>10</month>, http://www.fuelcellpark.com/projekt/down/Br_BZ_en.pdf

23
Wiberg E, Goeltzer H, Bauer R Z. Naturforsch. Teil B, 1951, 6: 394–395

24
Bogdanović B. Catalytic synthesis of organolithium and organomagnesium compounds and of lithium and magnesium hydrides—Applications in organic synthesis and hydrogen storage. Awandte Chemie International Edition in English, 1985, 24(4): 262–273

25
Zaluska A, Zaluski L, Ström-Olsen J O. Nanocrystalline magnesium for hydrogen storage. Journal of Alloys and Compounds, 1999, 288(1,2): 217–225

26
Ding R G, Lu G Q, Yan Z F, Wilson M A. Recent advances in the preparation and utilization of carbon nanotubes for hydrogen storage. Journal of Nanoscience and Nanotechnology, 2001, 1(1): 7–29

DOI PMID

27
Nishihara H, Kyotani T. Templated nanocarbons for energy storage. Advanced Materials, 2012, 24(33): 4473–4498

DOI PMID

28
Guay P. Hydrogen storage. 2011-<month>11</month>-<day>16</day>, http://www.nanotechnologies.qc.ca/projects/hydrogen /hydrogen_storage # more-3

29
Dillon A C, Jones K M, Bekkedahl T A, Kiang C H, Bethune D S, Heben M J. Storage of hydrogen in single-walled carbon nanotubes. Nature, 1997, 386(6623): 377–379

DOI

30
Chen P, Wu X, Lin J, Tan K L. High H2 uptake by alkali-doped carbon nanotubes under ambient pressure and moderate temperatures. Science, 1999, 285(5424): 91–93

DOI PMID

31
Dillon A C, Gennett T, Alleman J L, Jones K M, Parilla P A, Heben M J. Carbon nanotube materials for hydrogen storage. In: Proceedings of the 1999 US DOE Hydrogen Program Review II. Golden: National Renewable Energy Laboratory, 1999

32
Liu C, Fan Y Y, Liu M, Cong H T, Cheng H M, Dresselhaus M S. Hydrogen storage in single-walled carbon nanotubes at room temperature. Science, 1999, 286(5442): 1127–1129

DOI PMID

33
Ye Y, Ahn C C, Witham C, Fultz B, Liu J, Rinzler A G, Colbert D, Smith K A, Smalley R E. Hydrogen adsorption and cohesive energy of single-walled carbon nanotubes. Applied Physics Letters, 1999, 74(16): 2307–2309

DOI

34
Wu X B, Chen P, Lin J, Tan K L. Hydrogen uptake by carbon nanotubes. International Journal of Hydrogen Energy, 2000, 25(3): 261–265

DOI

35
Dillon A C, Gennett T, Alleman J L, Jones K M, Parilla P A, Heben M J. Carbon nanotube materials for hydrogen storage. Proceedings of the 2000 US DOE Hydrogen Program Review, II. Golden: National Renewable Energy Laboratory, 2000

36
Hirscher M, Becher M, Haluska M, Dettlaff-Weglikowska U, Quintel A, Duesberg G S, Choi Y M, Downes P, Hulman M, Roth S, Stepanek I, Bernier P. Hydrogen storage in sonicated carbon materials. Applied Physic A, 2001, 72(2): 129–132

DOI

37
Hirscher M, Becher M, Haluska M, Quintel A, Skakalova V, Choi Y M, Dettlaff-Weglikowska U, Roth S, Stepanek I, Bernier P, Leonhardt A, Fink J. Hydrogen storage in carbon nanostrutures. Journal of Alloys and Compounds, 2002, 330–332: 654–658

DOI

38
Yang R T. Hydrogen storage by alkali-doped carbon nanotubes revisited. Carbon, 2000, 38(4): 623–626

DOI

39
Pinkerton F E, Wicke B G, Olk C H, Tibbetts G G, Meisner G P, Meyer M S, Herbst J F. Thermogravimetric measurement of hydrogen absorption in alkali-modified carbon materials. Journal of Physical Chemistry B, 2000, 104(40): 9460–9467

DOI

40
Chambers A, Park C, Baker R T K, Rodriguez N M. Hydrogen storage in graphite nanofibers. Journal of Physical Chemistry B, 1998, 102(22): 4253–4256

DOI

41
Haisen. LED working principle. 2011-<month>11</month>-<day>18</day>, http://www.hs-lighting.com/FAQ/7.html

42
Rusponi S, Kern K. Frontiers in Nanoscience. Chapter 14. 2012-<month>10</month>-<day>13</day>, http://ipn2.epfl.ch/lns/lectures/nanoscience

43
Hiskey D. How an LED works. 2011-<month>11</month>-<day>19</day>, http://www.todayifoundout.com/index.php/2010/03/how-an-led-works

44
Bowers M J 2nd, McBride J R, Rosenthal S J. White-light emission from magic-sized cadmium selenide nanocrystals. Journal of the American Chemical Society, 2005, 127(44): 15378–15379

DOI PMID

45
PlasmaChem GmbH. Quantenpunkten. “Echt” grunes und sonnenahnliches licht aus LEDs. Nanotechnologie Actuell, 2012-<month>11</month>-<day>20</day>, http://www.plasmachem.com/led-true-green_de.html

46
ScienceDaily. Nanotechnology being used in next-generation LED lights. 2011-<month>11</month>-<day>20</day>, http://www.sciencedaily.com/releases/2007/03/070319175617.htm

47
Auvray A, Pigeon S, Izquierdo R, Desjardins P, Martel R. Carbon nanotube sheets as electrodes in organic light-emitting diodes. Applied Physics Letters, 2006, 88(18): 183104–183106

DOI

48
Wang Z B, Helander M G, Qiu J, Puzzo D P, Greiner M T, Hudson Z M, Wang S, Liu Z W, Lu Z H. Unlocking the full potential of organic light emitting diodes on flexible plastic. Nature Photonics, 2011, 5(12): 753–757

DOI

49
Levenstein S. OLED television wallpaper gives you a room with a view. 2012-<month>10</month>-<day>13</day>, http://inventorspot.com/articles/oled_television_wallpaper_gives_you_room_view_24270

50
Martens R. Samsung AMOLED. 2012-<month>10</month>-<day>13</day>, http://www.oled-info.com/samsung-oled

51
LEDs Magazine. Researchers develop all-white OLEDs, hybrid LEDs. 2012-<month>10</month>-<day>13</day>, http://ledsmagazine.com/news/6/6/21

52
Schindall J. The charge of the ultracapacitors. IEEE Spectrum, 2007, 44(11): 42–46

DOI

53
Stauffer N W. Saying goodbye to batteries. 2012-<month>10</month>-<day>13</day>, http://mitei.mit.edu/news/saying-goodbye-batteries

54
Institute of Science in Society (ISIS). Quantum dots and ultra-efficient solar cells? 2011-<month>11</month>-<day>13</day>, http://www.i-sis.org.uk/QDA UESC.php

55
Semonin O E, Luther J M, Choi S, Chen H Y, Gao J, Nozik A J, Beard M C. Peak external photocurrent quantum efficiency exceeding 100% via MEG in a quantum dot solar cell. Science, 2011, 334(6062): 1530–1533

DOI PMID

56
Tiwari G N, Mishra R K. Advanced Renewable Energy Sources. Royal Society of Chemistry, 2011, 121

57
Green M A. Consolidation of thin-film photovoltaic technology: the coming decade of opportunity. Progress in Photovoltaics: Research and Applications, 2006, 14(5): 383–392

DOI

58
Sánchez C V. Thin film nanocrystalline silicon solar cells obtained by hot-wire CVD. Dissertation for the Doctoral Degree. Universitat de Barcelona, 2001

59
Jackson P, Hariskos D, Lotter E, Paetel S, Wuerz R, Menner R, Wischmann W, Powalla M. New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%. Progress in Photovoltaics: Research and Applications, 2011, 19(7): 894–897

DOI

60
Gohary H E. Development of low-temperature epitaxial silicon films and application to solar cells. Dissertation for the Doctoral Degree. University of Waterloo, 2010

61
Sullivan P, Schumann S, Da Campo R, Howells T, Duraud A, Shipman M, Hatton R A, Jones T S. Ultra-high voltage multijunction organic solar cells for low-power electronic applications. Advanced Energy Materials, online October 1, 2012

62
Perez R, Perez M. A fundamental look at energy reserves for the planet. 2012-<month>10</month>-<day>13</day>, http://www.asrc.cestm.albany.edu/perez/Kit/pdf/a-fundamental-look-at%20the-planetary-energy-reserves.pdf

63
Chen F F. An Indispensable Truth: How Fusion Power Can Save the Planet. New York: Springer, 2011

64
Grätzel M. Photoelectrochemical cells. Nature, 2001, 414(6861): 338–344

DOI PMID

65
Gleue A D. How does the Grätzel Solar Cell work? 2012-<month>06</month>-<day>05</day>, http://teachers.usd497.org/agleue/Gratzel_solar_cell assets/How does a Gratzel Solar Cell work.htm

Outlines

/