Application of nanotechnologies in the energy sector: A brief and short review
Ferric CHRISTIAN, EDITH, SELLY, Dendy ADITYAWARMAN, Antonius INDARTO
Application of nanotechnologies in the energy sector: A brief and short review
Energy is of great importance in human life because of its benefits as the main resource for human activity. According to International Energy Agency (IEA), energy demands are expected to continue increasing until 2030. Because energy demand will never decrease, it is necessary to develop modern technology, such as nano-based technology, in order to obtain a more effective and efficient process to produce more energy. The application of nano technology or nano material in the field of energy, which involves lithium-ion battery, fuel cell, light emitting diode (LED), ultra-capacitor, and solar cell (including Grätzel cell), is a hot topic in many scientific researches. Unfortunately, its current development is hampered by the expensive cost of production compared to conventional technologies. Therefore, priority should be given to nano technology in the energy sector order to obtain higher efficiency, lower production cost, and easier in its application.
nanotechnology / energy / batteries / fuel cell / Grätzel cell / solar cell
[1] |
Energy Information Administration (EIA). International energy outlook.<day>2007</day>-<month>07</month>, http://www.eia.doe.gov/oiaf/ieo/index.html
|
[2] |
Suehiro S. Energy Intensity of GDP as an Index of Energy Conservation. Institute of Energy Economics Japan Report. 2007
|
[3] |
Berger M. Nanotechnology applications could provide the required energy breakthroughs. 2012-<month>06</month>-<day>05</day>, http://www.nanowerk.com/spotlight/spotid=7424.php
|
[4] |
Joachim C. To be nano or not to be nano? Nature Materials, 2005, 4(2): 107–109
CrossRef
Pubmed
Google scholar
|
[5] |
Yunus I S, Harwin, Kurniawan A, Adityawarman D, Indarto A. Nanotechnologies in water and air pollution treatment. Environmental Technology Reviews, iFirst, 2012, 1–13
|
[6] |
Hartono. Prospek penelitian dan pengembangan teknologi ketenagalistrikan dan energi baru terbarukan berbasis nanoteknologi. Mineral Energy, 2010, 8(1): 10–16
|
[7] |
Luther W. Application of Nano-Technologies in the Energy Sector. Germany: Hessian Ministry of Economy, Transport, Urban and Regional Development, 2008
|
[8] |
Tatsumisago M. Solid-state lithium batteries using glass electrolytes. 2012-<month>10</month>, http://rm1.cc.lehigh.edu:8080/dept/IMI/pdf_DC07/Tatsumisago.pdf
|
[9] |
Zhao X, Hayner C M, Kung M C, Kung H H. In-plane vacancy-enabled high-power Si-graphene composite electrode for lithium-ion batteries. Advanced Energy Materials, 2011, 1(6): 1079– 1084
CrossRef
Google scholar
|
[10] |
Bullis K. Higher-capacity lithium-ion batteries technology review. 2010-<month>06</month>-<day>11</day>, http://www.technologyreview.com/energy/17553/?a=f
|
[11] |
Liang S, Zhu X, Lian P, Yang W, Wang H. Superior cycle performance of Sn@C/graphene nanocomposite as an anode material for lithium-ion batteries. Journal of Solid State Chemistry, 2011, 184(6): 1400–1404
CrossRef
Google scholar
|
[12] |
Schroder K. Understanding the formation and composition of the solid-electrolyte interphase at silicon surfaces. 2012-<month>10</month>, http://webb.cm.utexas.edu/research/research_SEI.html
|
[13] |
Nazri G A, Pistoia G. Lithium Batteries: Science and Technology. New York: Springer, 2003, 621–637
|
[66] |
Rice B M. Jow T R. Energy&Energetics. U.S. Army Research Laboratory, 2012, <month>5</month>
|
[14] |
Smithsonian Institution. Fuel cell basics. 2011-<month>11</month>-<day>24</day>http://americanhistory.si.edu/fuelcells/basics.htm
|
[15] |
Antolini E, Perez J. The renaissance of unsupported nanostructured catalysts for low-temperature fuel cells: from the size to the shape of metal nanostructures. Journal of Materials Science, 2011, 46(13): 4435–4457
CrossRef
Google scholar
|
[16] |
Guo S, Sun S. FePt nanoparticles assembled on graphene as enhanced catalyst for oxygen reduction reaction. Journal of the American Chemical Society, 2012, 134(5): 2492–2495
CrossRef
Pubmed
Google scholar
|
[17] |
Dai L, Chang D W, Baek J B, Lu W. Carbon nanomaterials for advanced energy conversion and storage. Small, 2012, 8(8): 1130–1166
CrossRef
Pubmed
Google scholar
|
[18] |
Chu K L, Gold S, Subramanian V, Lu C, Shannon M A, Masel R I. A nanoporous silicon membrane electrode assembly for on-chip micro fuel cell applications. Journal of Microelectromechanical Systems, 2006, 15(3): 671–677
CrossRef
Google scholar
|
[19] |
Bagotsky V S. Fuel Cells in Electrochemistry Encyclopedia. Yeager Center for Electrochemical Sciences (YCES) Report, 2009
|
[20] |
Sun S, Jaouen F, Dodelet J P. Controlled growth of Pt nanowires on carbon nanospheres and their enhanced performance as electrocatalysts in PEM fuel cells. Advanced Materials (Deerfield Beach, Fla.), 2008, 20(20): 3900–3904
CrossRef
Google scholar
|
[21] |
Thomas S, Zalbowitz M. Fuel Cells—Green Power. New Mexico: Los Alamos National Laboratory, 2011
|
[22] |
Bewag A. Energy moving into the future. The fuel cell: A technical report. 2012-<month>10</month>, http://www.fuelcellpark.com/projekt/down/Br_BZ_en.pdf
|
[23] |
Wiberg E, Goeltzer H, Bauer R Z. Naturforsch. Teil B, 1951, 6: 394–395
|
[24] |
Bogdanović B. Catalytic synthesis of organolithium and organomagnesium compounds and of lithium and magnesium hydrides—Applications in organic synthesis and hydrogen storage. Awandte Chemie International Edition in English, 1985, 24(4): 262–273
|
[25] |
Zaluska A, Zaluski L, Ström-Olsen J O. Nanocrystalline magnesium for hydrogen storage. Journal of Alloys and Compounds, 1999, 288(1,2): 217–225
|
[26] |
Ding R G, Lu G Q, Yan Z F, Wilson M A. Recent advances in the preparation and utilization of carbon nanotubes for hydrogen storage. Journal of Nanoscience and Nanotechnology, 2001, 1(1): 7–29
CrossRef
Pubmed
Google scholar
|
[27] |
Nishihara H, Kyotani T. Templated nanocarbons for energy storage. Advanced Materials, 2012, 24(33): 4473–4498
CrossRef
Pubmed
Google scholar
|
[28] |
Guay P. Hydrogen storage. 2011-<month>11</month>-<day>16</day>, http://www.nanotechnologies.qc.ca/projects/hydrogen /hydrogen_storage # more-3
|
[29] |
Dillon A C, Jones K M, Bekkedahl T A, Kiang C H, Bethune D S, Heben M J. Storage of hydrogen in single-walled carbon nanotubes. Nature, 1997, 386(6623): 377–379
CrossRef
Google scholar
|
[30] |
Chen P, Wu X, Lin J, Tan K L. High H2 uptake by alkali-doped carbon nanotubes under ambient pressure and moderate temperatures. Science, 1999, 285(5424): 91–93
CrossRef
Pubmed
Google scholar
|
[31] |
Dillon A C, Gennett T, Alleman J L, Jones K M, Parilla P A, Heben M J. Carbon nanotube materials for hydrogen storage. In: Proceedings of the 1999 US DOE Hydrogen Program Review II. Golden: National Renewable Energy Laboratory, 1999
|
[32] |
Liu C, Fan Y Y, Liu M, Cong H T, Cheng H M, Dresselhaus M S. Hydrogen storage in single-walled carbon nanotubes at room temperature. Science, 1999, 286(5442): 1127–1129
CrossRef
Pubmed
Google scholar
|
[33] |
Ye Y, Ahn C C, Witham C, Fultz B, Liu J, Rinzler A G, Colbert D, Smith K A, Smalley R E. Hydrogen adsorption and cohesive energy of single-walled carbon nanotubes. Applied Physics Letters, 1999, 74(16): 2307–2309
CrossRef
Google scholar
|
[34] |
Wu X B, Chen P, Lin J, Tan K L. Hydrogen uptake by carbon nanotubes. International Journal of Hydrogen Energy, 2000, 25(3): 261–265
CrossRef
Google scholar
|
[35] |
Dillon A C, Gennett T, Alleman J L, Jones K M, Parilla P A, Heben M J. Carbon nanotube materials for hydrogen storage. Proceedings of the 2000 US DOE Hydrogen Program Review, II. Golden: National Renewable Energy Laboratory, 2000
|
[36] |
Hirscher M, Becher M, Haluska M, Dettlaff-Weglikowska U, Quintel A, Duesberg G S, Choi Y M, Downes P, Hulman M, Roth S, Stepanek I, Bernier P. Hydrogen storage in sonicated carbon materials. Applied Physic A, 2001, 72(2): 129–132
CrossRef
Google scholar
|
[37] |
Hirscher M, Becher M, Haluska M, Quintel A, Skakalova V, Choi Y M, Dettlaff-Weglikowska U, Roth S, Stepanek I, Bernier P, Leonhardt A, Fink J. Hydrogen storage in carbon nanostrutures. Journal of Alloys and Compounds, 2002, 330–332: 654–658
CrossRef
Google scholar
|
[38] |
Yang R T. Hydrogen storage by alkali-doped carbon nanotubes revisited. Carbon, 2000, 38(4): 623–626
CrossRef
Google scholar
|
[39] |
Pinkerton F E, Wicke B G, Olk C H, Tibbetts G G, Meisner G P, Meyer M S, Herbst J F. Thermogravimetric measurement of hydrogen absorption in alkali-modified carbon materials. Journal of Physical Chemistry B, 2000, 104(40): 9460–9467
CrossRef
Google scholar
|
[40] |
Chambers A, Park C, Baker R T K, Rodriguez N M. Hydrogen storage in graphite nanofibers. Journal of Physical Chemistry B, 1998, 102(22): 4253–4256
CrossRef
Google scholar
|
[41] |
Haisen. LED working principle. 2011-<month>11</month>-<day>18</day>, http://www.hs-lighting.com/FAQ/7.html
|
[42] |
Rusponi S, Kern K. Frontiers in Nanoscience. Chapter 14. 2012-<month>10</month>-<day>13</day>, http://ipn2.epfl.ch/lns/lectures/nanoscience
|
[43] |
Hiskey D. How an LED works. 2011-<month>11</month>-<day>19</day>, http://www.todayifoundout.com/index.php/2010/03/how-an-led-works
|
[44] |
Bowers M J 2nd, McBride J R, Rosenthal S J. White-light emission from magic-sized cadmium selenide nanocrystals. Journal of the American Chemical Society, 2005, 127(44): 15378–15379
CrossRef
Pubmed
Google scholar
|
[45] |
PlasmaChem GmbH. Quantenpunkten. “Echt” grunes und sonnenahnliches licht aus LEDs. Nanotechnologie Actuell, 2012-<month>11</month>-<day>20</day>, http://www.plasmachem.com/led-true-green_de.html
|
[46] |
ScienceDaily. Nanotechnology being used in next-generation LED lights. 2011-<month>11</month>-<day>20</day>, http://www.sciencedaily.com/releases/2007/03/070319175617.htm
|
[47] |
Auvray A, Pigeon S, Izquierdo R, Desjardins P, Martel R. Carbon nanotube sheets as electrodes in organic light-emitting diodes. Applied Physics Letters, 2006, 88(18): 183104–183106
CrossRef
Google scholar
|
[48] |
Wang Z B, Helander M G, Qiu J, Puzzo D P, Greiner M T, Hudson Z M, Wang S, Liu Z W, Lu Z H. Unlocking the full potential of organic light emitting diodes on flexible plastic. Nature Photonics, 2011, 5(12): 753–757
CrossRef
Google scholar
|
[49] |
Levenstein S. OLED television wallpaper gives you a room with a view. 2012-<month>10</month>-<day>13</day>, http://inventorspot.com/articles/oled_television_wallpaper_gives_you_room_view_24270
|
[50] |
Martens R. Samsung AMOLED. 2012-<month>10</month>-<day>13</day>, http://www.oled-info.com/samsung-oled
|
[51] |
LEDs Magazine. Researchers develop all-white OLEDs, hybrid LEDs. 2012-<month>10</month>-<day>13</day>, http://ledsmagazine.com/news/6/6/21
|
[52] |
Schindall J. The charge of the ultracapacitors. IEEE Spectrum, 2007, 44(11): 42–46
CrossRef
Google scholar
|
[53] |
Stauffer N W. Saying goodbye to batteries. 2012-<month>10</month>-<day>13</day>, http://mitei.mit.edu/news/saying-goodbye-batteries
|
[54] |
Institute of Science in Society (ISIS). Quantum dots and ultra-efficient solar cells? 2011-<month>11</month>-<day>13</day>, http://www.i-sis.org.uk/QDA UESC.php
|
[55] |
Semonin O E, Luther J M, Choi S, Chen H Y, Gao J, Nozik A J, Beard M C. Peak external photocurrent quantum efficiency exceeding 100% via MEG in a quantum dot solar cell. Science, 2011, 334(6062): 1530–1533
CrossRef
Pubmed
Google scholar
|
[56] |
Tiwari G N, Mishra R K. Advanced Renewable Energy Sources. Royal Society of Chemistry, 2011, 121
|
[57] |
Green M A. Consolidation of thin-film photovoltaic technology: the coming decade of opportunity. Progress in Photovoltaics: Research and Applications, 2006, 14(5): 383–392
CrossRef
Google scholar
|
[58] |
Sánchez C V. Thin film nanocrystalline silicon solar cells obtained by hot-wire CVD. Dissertation for the Doctoral Degree. Universitat de Barcelona, 2001
|
[59] |
Jackson P, Hariskos D, Lotter E, Paetel S, Wuerz R, Menner R, Wischmann W, Powalla M. New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%. Progress in Photovoltaics: Research and Applications, 2011, 19(7): 894–897
CrossRef
Google scholar
|
[60] |
Gohary H E. Development of low-temperature epitaxial silicon films and application to solar cells. Dissertation for the Doctoral Degree. University of Waterloo, 2010
|
[61] |
Sullivan P, Schumann S, Da Campo R, Howells T, Duraud A, Shipman M, Hatton R A, Jones T S. Ultra-high voltage multijunction organic solar cells for low-power electronic applications. Advanced Energy Materials, online October 1, 2012
|
[62] |
Perez R, Perez M. A fundamental look at energy reserves for the planet. 2012-<month>10</month>-<day>13</day>, http://www.asrc.cestm.albany.edu/perez/Kit/pdf/a-fundamental-look-at%20the-planetary-energy-reserves.pdf
|
[63] |
Chen F F. An Indispensable Truth: How Fusion Power Can Save the Planet. New York: Springer, 2011
|
[64] |
Grätzel M. Photoelectrochemical cells. Nature, 2001, 414(6861): 338–344
CrossRef
Pubmed
Google scholar
|
[65] |
Gleue A D. How does the Grätzel Solar Cell work? 2012-<month>06</month>-<day>05</day>, http://teachers.usd497.org/agleue/Gratzel_solar_cell assets/How does a Gratzel Solar Cell work.htm
|
/
〈 | 〉 |