Plasma-assisted ammonia synthesis under mild conditions for hydrogen and electricity storage: Mechanisms, pathways, and application prospects
Received date: 17 Mar 2024
Accepted date: 27 May 2024
Published date: 15 Aug 2024
Copyright
Ammonia, with its high hydrogen storage density of 17.7 wt.% (mass fraction), cleanliness, efficiency, and renewability, presents itself as a promising zero-carbon fuel. However, the traditional Haber−Bosch (H−B) process for ammonia synthesis necessitates high temperature and pressure, resulting in over 420 million tons of carbon dioxide emissions annually, and relies on fossil fuel consumption. In contrast, dielectric barrier discharge (DBD) plasma-assisted ammonia synthesis operates at low temperatures and atmospheric pressures, utilizing nitrogen and hydrogen radicals excited by energetic electrons, offering a potential alternative to the H−B process. This method can be effectively coupled with renewable energy sources (such as solar and wind) for environmentally friendly, distributed, and efficient ammonia production. This review delves into a comprehensive analysis of the low-temperature DBD plasma-assisted ammonia synthesis technology at atmospheric pressure, covering the reaction pathway, mechanism, and catalyst system involved in plasma nitrogen fixation. Drawing from current research, it evaluates the economic feasibility of the DBD plasma-assisted ammonia synthesis technology, analyzes existing dilemmas and challenges, and provides insights and recommendations for the future of nonthermal plasma ammonia processes.
Feng GONG , Yuhang JING , Rui XIAO . Plasma-assisted ammonia synthesis under mild conditions for hydrogen and electricity storage: Mechanisms, pathways, and application prospects[J]. Frontiers in Energy, 2024 , 18(4) : 418 -435 . DOI: 10.1007/s11708-024-0949-1
1 |
Liu L, Xu W, Wen Z.
|
2 |
Palys M J, Daoutidis P. Optimizing renewable ammonia production for a sustainable fertilizer supply chain transition. ChemSusChem, 2023, 16(22): 202300563
|
3 |
Mushtaq M A, Kumar A, Liu W.
|
4 |
Yang P, Gong F, Liu C.
|
5 |
Joseph Sekhar S, Said Ahmed Al-Shahri A, Glivin G.
|
6 |
Fu E, Gong F, Wang S.
|
7 |
Liu X, Liu C, He X.
|
8 |
Duong P A, Ryu B R, Song M K.
|
9 |
Wang S, Gong F, Zhou Q.
|
10 |
Aziz M, Juangsa F B, Irhamna A R.
|
11 |
Adeniyi A, Bello I, Mukaila T.
|
12 |
Liang J, Li Z, Zhang L.
|
13 |
Liu Q, Xu T, Luo Y.
|
14 |
Kafle K, Greeson K, Lee C.
|
15 |
Liu H, Ji X, Guo Z.
|
16 |
Qi Y, Liu W, Liu S.
|
17 |
Tian J, Wang L, Xiong Y.
|
18 |
Macfarlane D R, Cherepanov P V, Choi J.
|
19 |
Yu S, Xiang T, Alharbi N S.
|
20 |
Li T, Duan Y, Wang Y.
|
21 |
Kim D, Surendran S, Janani G.
|
22 |
Akay G, Zhang K. Process intensification in ammonia synthesis using novel coassembled supported microporous catalysts promoted by nonthermal plasma. Industrial & Engineering Chemistry Research, 2017, 56(2): 457–468
|
23 |
Yu Y, Geng M, Wei D.
|
24 |
Kim D, Surendran S, Lim Y.
|
25 |
Murakami K, Manabe R, Nakatsubo H.
|
26 |
Ogo S, Sekine Y. Catalytic reaction assisted by plasma or electric field. Chemical Record, 2017, 17(8): 726–738
|
27 |
Aziz M, Wijayanta A T, Nandiyanto A B D. Ammonia as effective hydrogen storage: A review on production, storage and utilization. Energies, 2020, 13(12): 3062
|
28 |
Ge Y, Yang Z, He H.
|
29 |
Aihara K, Akiyama M, Deguchi T.
|
30 |
Liu N, Sun Z, Zhang H.
|
31 |
Patil B S, Wang Q, Hessel V.
|
32 |
Kandemir T, Schuster M E, Senyshyn A.
|
33 |
Lee K, Liu X, Vyawahare P.
|
34 |
Zhou Q, Gong F, Xie Y.
|
35 |
Liu X, Elgowainy A, Wang M. Life cycle energy use and greenhouse gas emissions of ammonia production from renewable resources and industrial by-products. Green Chemistry, 2020, 22(17): 5751–5761
|
36 |
Ahmed M I, Assafiri A, Hibbert D B.
|
37 |
M . Nguyen H, Omidkar A, Song H. Technical challenges and prospects in sustainable plasma catalytic ammonia production from methane and nitrogen. ChemPlusChem, 2023, 88(7): 202300129
|
38 |
Bogaerts A, Neyts E C. Plasma technology: An emerging technology for energy storage. ACS Energy Letters, 2018, 3(4): 1013–1027
|
39 |
Li Z, Zhou Q, Liang J.
|
40 |
Li K, Chen S, Li M.
|
41 |
Zhou G, Zhao H, Wang X.
|
42 |
Kamarinopoulou N S W, Wittreich G R, Vlachos D G. Direct HCN synthesis via plasma-assisted conversion of methane and nitrogen. Science Advances, 2024, 10(13): eadl4246
|
43 |
Jing Y, Gong F, Wang S.
|
44 |
Giddey S, Badwal S P S, Kulkarni A. Review of electrochemical ammonia production technologies and materials. International Journal of Hydrogen Energy, 2013, 38(34): 14576–14594
|
45 |
Yang B, Ding W, Zhang H.
|
46 |
Zhou Q, Gong F, Xie Y.
|
47 |
Liang J, Zhou Q, Mou T.
|
48 |
He X, Li Z, Yao J.
|
49 |
Cai Z, Zhao D, Fan X.
|
50 |
Fan X, Zhao D, Deng Z.
|
51 |
Yu M S, Jesudass S C, Surendran S.
|
52 |
An T Y, Surendran S, Jesudass S C.
|
53 |
Mahmud K, Makaju S, Ibrahim R.
|
54 |
Mus F, Crook M B, Garcia K.
|
55 |
Wang W L, Moore J K, Martiny A C.
|
56 |
Bo Y, Wang H, Lin Y.
|
57 |
Dong G, Ho W, Wang C. Selective photocatalytic N2 fixation dependent on g-C3N4 induced by nitrogen vacancies. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(46): 23435–23441
|
58 |
Li P, Zhou Z, Wang Q.
|
59 |
Feng S, Gao W, Wang Q.
|
60 |
Chen J G, Crooks R M, Seefeldt L C.
|
61 |
Gao W, Guo J, Wang P.
|
62 |
Fu E, Gong F, Wang S.
|
63 |
Zhang J, Li X, Zheng J.
|
64 |
Kim H H, Teramoto Y, Ogata A.
|
65 |
Shao K, Mesbah A. A study on the role of electric field in low-temperature plasma catalytic ammonia synthesis via integrated density functional theory and microkinetic modeling. JACS Au, 2024, 4(2): 525–544
|
66 |
Neyts E C, Ostrikov K K, Sunkara M K.
|
67 |
Zhao L, Wang W, Zhou W.
|
68 |
Nguyen H M, Gorky F, Guthrie S.
|
69 |
Gorky F, Guthrie S R, Smoljan C S.
|
70 |
Liu J, Zhu X, Hu X.
|
71 |
Zhu X, Hu X, Wu X.
|
72 |
Wu H, Yang L, Wen J.
|
73 |
Mehta P, Barboun P, Herrera F A.
|
74 |
Liu T W, Gorky F, Carreon M L.
|
75 |
Gorky F, Best A, Jasinski J.
|
76 |
Lamichhane P, Paneru R, Nguyen L N.
|
77 |
Nakajima J, Sekiguchi H. Synthesis of ammonia using microwave discharge at atmospheric pressure. Thin Solid Films, 2008, 516(13): 4446–4451
|
78 |
Bogaerts A, Tu X, Whitehead J C.
|
79 |
Wang X, Du X, Chen K.
|
80 |
Qu Z, Zhou R, Sun J.
|
81 |
Peng P, Li Y, Cheng Y.
|
82 |
Shah J, Wu T, Lucero J.
|
83 |
Iwamoto M, Akiyama M, Aihara K.
|
84 |
Hosseini H. Dielectric barrier discharge plasma catalysis as an alternative approach for the synthesis of ammonia: A review. RSC Advances, 2023, 13(40): 28211–28223
|
85 |
Rouwenhorst K H R, Mani S, Lefferts L. Improving the energy yield of plasma-based ammonia synthesis with in situ adsorption. ACS Sustainable Chemistry & Engineering, 2022, 10(6): 1994–2000
|
86 |
Gorky F, Lucero J M, Crawford J M.
|
87 |
GorkyFNamboACarreonM A,
|
88 |
Guo H, Wang M, Liu J.
|
89 |
Barboun P, Mehta P, Herrera F A.
|
90 |
Chen Z, Koel B E, Sundaresan S. Plasma-assisted catalysis for ammonia synthesis in a dielectric barrier discharge reactor: Key surface reaction steps and potential causes of low energy yield. Journal of Physics. D, Applied Physics, 2022, 55(5): 055202
|
91 |
Hu X, Zhu X, Wu X.
|
92 |
Peng P, Cheng Y, Hatzenbeller R.
|
93 |
Zhao Y, Li K, Du J.
|
94 |
Zhao H, Song G, Chen Z.
|
95 |
Li S, Shao Y, Chen H.
|
96 |
Changhai L, Zhaobin W, Qin X.
|
97 |
Wang Y, Yang W, Xu S.
|
98 |
Winter L R, Ashford B, Hong J.
|
99 |
Wang Y, Craven M, Yu X.
|
100 |
Liu Y, Wang C W, Xu X F.
|
101 |
Rouwenhorst K H R, Kim H H. Lefferts vibrationally excited activation of N2 in plasma-enhanced catalytic ammonia synthesis: A kinetic analysis. ACS Sustainable Chemistry & Engineering, 2019, 7(20): 17515–17522
|
102 |
Shao K, Mesbah A. A study on the role of electric field in low-temperature plasma catalytic ammonia synthesis via integrated density functional theory and microkinetic modeling. JACS Au, 2024, 4(2): 525–544
|
103 |
Brown S, Ahmat Ibrahim S, Robinson B R.
|
104 |
Andersen J A, Holm M C, van ’t Veer K.
|
105 |
Peng P, Chen P, Addy M.
|
106 |
Zhang X, Wang Y, Liu C.
|
107 |
Long J, Chen S, Zhang Y.
|
108 |
Gao J, Jiang B, Ni C.
|
109 |
Shin H, Jung S, Bae S.
|
110 |
Ren Y, Yu C, Wang L.
|
111 |
Li L, Tang C, Cui X.
|
112 |
Sun J, Alam D, Daiyan R.
|
113 |
Liu Z, Tian Y, Niu G.
|
114 |
Sakakura T, Murakami N, Takatsuji Y.
|
115 |
Zhou D, Zhou R, Zhou R.
|
116 |
Takahashi J, Sasaki K. Production rates and destruction frequencies of ammonia in inductively coupled H2O/N2 and H2/N2 plasmas. Contributions to Plasma Physics, 2023, 64(3): e202300167
|
117 |
RamoyMShiraiNSasakiK. Catalyst-free ammonia synthesis using DC-driven atmospheric-pressure plasma in contact with liquid. Journal of Physics D: Applied Physics, 2024, 57(1)
|
118 |
Haruyama T, Namise T, Shimoshimizu N.
|
119 |
Winter L R, Chen J G. N2 fixation by plasma-activated processes. Joule, 2021, 5(2): 300–315
|
120 |
Rouwenhorst K H R, Lefferts L. Feasibility study of plasma-catalytic ammonia synthesis for energy storage applications. Catalysts, 2020, 10(9): 999
|
/
〈 | 〉 |