Plasma-assisted ammonia synthesis under mild conditions for hydrogen and electricity storage: Mechanisms, pathways, and application prospects
Feng GONG, Yuhang JING, Rui XIAO
Plasma-assisted ammonia synthesis under mild conditions for hydrogen and electricity storage: Mechanisms, pathways, and application prospects
Ammonia, with its high hydrogen storage density of 17.7 wt.% (mass fraction), cleanliness, efficiency, and renewability, presents itself as a promising zero-carbon fuel. However, the traditional Haber−Bosch (H−B) process for ammonia synthesis necessitates high temperature and pressure, resulting in over 420 million tons of carbon dioxide emissions annually, and relies on fossil fuel consumption. In contrast, dielectric barrier discharge (DBD) plasma-assisted ammonia synthesis operates at low temperatures and atmospheric pressures, utilizing nitrogen and hydrogen radicals excited by energetic electrons, offering a potential alternative to the H−B process. This method can be effectively coupled with renewable energy sources (such as solar and wind) for environmentally friendly, distributed, and efficient ammonia production. This review delves into a comprehensive analysis of the low-temperature DBD plasma-assisted ammonia synthesis technology at atmospheric pressure, covering the reaction pathway, mechanism, and catalyst system involved in plasma nitrogen fixation. Drawing from current research, it evaluates the economic feasibility of the DBD plasma-assisted ammonia synthesis technology, analyzes existing dilemmas and challenges, and provides insights and recommendations for the future of nonthermal plasma ammonia processes.
plasma catalysis / nitrogen fixation / ammonia synthesis / hydrogen storage / catalyst / carbon neutralization
[1] |
Liu L, Xu W, Wen Z.
CrossRef
Google scholar
|
[2] |
Palys M J, Daoutidis P. Optimizing renewable ammonia production for a sustainable fertilizer supply chain transition. ChemSusChem, 2023, 16(22): 202300563
CrossRef
Google scholar
|
[3] |
Mushtaq M A, Kumar A, Liu W.
CrossRef
Google scholar
|
[4] |
Yang P, Gong F, Liu C.
CrossRef
Google scholar
|
[5] |
Joseph Sekhar S, Said Ahmed Al-Shahri A, Glivin G.
CrossRef
Google scholar
|
[6] |
Fu E, Gong F, Wang S.
CrossRef
Google scholar
|
[7] |
Liu X, Liu C, He X.
CrossRef
Google scholar
|
[8] |
Duong P A, Ryu B R, Song M K.
CrossRef
Google scholar
|
[9] |
Wang S, Gong F, Zhou Q.
CrossRef
Google scholar
|
[10] |
Aziz M, Juangsa F B, Irhamna A R.
CrossRef
Google scholar
|
[11] |
Adeniyi A, Bello I, Mukaila T.
CrossRef
Google scholar
|
[12] |
Liang J, Li Z, Zhang L.
CrossRef
Google scholar
|
[13] |
Liu Q, Xu T, Luo Y.
CrossRef
Google scholar
|
[14] |
Kafle K, Greeson K, Lee C.
CrossRef
Google scholar
|
[15] |
Liu H, Ji X, Guo Z.
CrossRef
Google scholar
|
[16] |
Qi Y, Liu W, Liu S.
CrossRef
Google scholar
|
[17] |
Tian J, Wang L, Xiong Y.
CrossRef
Google scholar
|
[18] |
Macfarlane D R, Cherepanov P V, Choi J.
CrossRef
Google scholar
|
[19] |
Yu S, Xiang T, Alharbi N S.
CrossRef
Google scholar
|
[20] |
Li T, Duan Y, Wang Y.
CrossRef
Google scholar
|
[21] |
Kim D, Surendran S, Janani G.
CrossRef
Google scholar
|
[22] |
Akay G, Zhang K. Process intensification in ammonia synthesis using novel coassembled supported microporous catalysts promoted by nonthermal plasma. Industrial & Engineering Chemistry Research, 2017, 56(2): 457–468
CrossRef
Google scholar
|
[23] |
Yu Y, Geng M, Wei D.
CrossRef
Google scholar
|
[24] |
Kim D, Surendran S, Lim Y.
CrossRef
Google scholar
|
[25] |
Murakami K, Manabe R, Nakatsubo H.
CrossRef
Google scholar
|
[26] |
Ogo S, Sekine Y. Catalytic reaction assisted by plasma or electric field. Chemical Record, 2017, 17(8): 726–738
CrossRef
Google scholar
|
[27] |
Aziz M, Wijayanta A T, Nandiyanto A B D. Ammonia as effective hydrogen storage: A review on production, storage and utilization. Energies, 2020, 13(12): 3062
CrossRef
Google scholar
|
[28] |
Ge Y, Yang Z, He H.
CrossRef
Google scholar
|
[29] |
Aihara K, Akiyama M, Deguchi T.
CrossRef
Google scholar
|
[30] |
Liu N, Sun Z, Zhang H.
CrossRef
Google scholar
|
[31] |
Patil B S, Wang Q, Hessel V.
CrossRef
Google scholar
|
[32] |
Kandemir T, Schuster M E, Senyshyn A.
CrossRef
Google scholar
|
[33] |
Lee K, Liu X, Vyawahare P.
CrossRef
Google scholar
|
[34] |
Zhou Q, Gong F, Xie Y.
CrossRef
Google scholar
|
[35] |
Liu X, Elgowainy A, Wang M. Life cycle energy use and greenhouse gas emissions of ammonia production from renewable resources and industrial by-products. Green Chemistry, 2020, 22(17): 5751–5761
CrossRef
Google scholar
|
[36] |
Ahmed M I, Assafiri A, Hibbert D B.
CrossRef
Google scholar
|
[37] |
M . Nguyen H, Omidkar A, Song H. Technical challenges and prospects in sustainable plasma catalytic ammonia production from methane and nitrogen. ChemPlusChem, 2023, 88(7): 202300129
CrossRef
Google scholar
|
[38] |
Bogaerts A, Neyts E C. Plasma technology: An emerging technology for energy storage. ACS Energy Letters, 2018, 3(4): 1013–1027
CrossRef
Google scholar
|
[39] |
Li Z, Zhou Q, Liang J.
CrossRef
Google scholar
|
[40] |
Li K, Chen S, Li M.
CrossRef
Google scholar
|
[41] |
Zhou G, Zhao H, Wang X.
CrossRef
Google scholar
|
[42] |
Kamarinopoulou N S W, Wittreich G R, Vlachos D G. Direct HCN synthesis via plasma-assisted conversion of methane and nitrogen. Science Advances, 2024, 10(13): eadl4246
CrossRef
Google scholar
|
[43] |
Jing Y, Gong F, Wang S.
CrossRef
Google scholar
|
[44] |
Giddey S, Badwal S P S, Kulkarni A. Review of electrochemical ammonia production technologies and materials. International Journal of Hydrogen Energy, 2013, 38(34): 14576–14594
CrossRef
Google scholar
|
[45] |
Yang B, Ding W, Zhang H.
CrossRef
Google scholar
|
[46] |
Zhou Q, Gong F, Xie Y.
CrossRef
Google scholar
|
[47] |
Liang J, Zhou Q, Mou T.
CrossRef
Google scholar
|
[48] |
He X, Li Z, Yao J.
CrossRef
Google scholar
|
[49] |
Cai Z, Zhao D, Fan X.
CrossRef
Google scholar
|
[50] |
Fan X, Zhao D, Deng Z.
CrossRef
Google scholar
|
[51] |
Yu M S, Jesudass S C, Surendran S.
CrossRef
Google scholar
|
[52] |
An T Y, Surendran S, Jesudass S C.
CrossRef
Google scholar
|
[53] |
Mahmud K, Makaju S, Ibrahim R.
CrossRef
Google scholar
|
[54] |
Mus F, Crook M B, Garcia K.
CrossRef
Google scholar
|
[55] |
Wang W L, Moore J K, Martiny A C.
CrossRef
Google scholar
|
[56] |
Bo Y, Wang H, Lin Y.
CrossRef
Google scholar
|
[57] |
Dong G, Ho W, Wang C. Selective photocatalytic N2 fixation dependent on g-C3N4 induced by nitrogen vacancies. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(46): 23435–23441
CrossRef
Google scholar
|
[58] |
Li P, Zhou Z, Wang Q.
CrossRef
Google scholar
|
[59] |
Feng S, Gao W, Wang Q.
CrossRef
Google scholar
|
[60] |
Chen J G, Crooks R M, Seefeldt L C.
CrossRef
Google scholar
|
[61] |
Gao W, Guo J, Wang P.
CrossRef
Google scholar
|
[62] |
Fu E, Gong F, Wang S.
CrossRef
Google scholar
|
[63] |
Zhang J, Li X, Zheng J.
CrossRef
Google scholar
|
[64] |
Kim H H, Teramoto Y, Ogata A.
CrossRef
Google scholar
|
[65] |
Shao K, Mesbah A. A study on the role of electric field in low-temperature plasma catalytic ammonia synthesis via integrated density functional theory and microkinetic modeling. JACS Au, 2024, 4(2): 525–544
CrossRef
Google scholar
|
[66] |
Neyts E C, Ostrikov K K, Sunkara M K.
CrossRef
Google scholar
|
[67] |
Zhao L, Wang W, Zhou W.
CrossRef
Google scholar
|
[68] |
Nguyen H M, Gorky F, Guthrie S.
CrossRef
Google scholar
|
[69] |
Gorky F, Guthrie S R, Smoljan C S.
CrossRef
Google scholar
|
[70] |
Liu J, Zhu X, Hu X.
CrossRef
Google scholar
|
[71] |
Zhu X, Hu X, Wu X.
CrossRef
Google scholar
|
[72] |
Wu H, Yang L, Wen J.
CrossRef
Google scholar
|
[73] |
Mehta P, Barboun P, Herrera F A.
CrossRef
Google scholar
|
[74] |
Liu T W, Gorky F, Carreon M L.
CrossRef
Google scholar
|
[75] |
Gorky F, Best A, Jasinski J.
CrossRef
Google scholar
|
[76] |
Lamichhane P, Paneru R, Nguyen L N.
CrossRef
Google scholar
|
[77] |
Nakajima J, Sekiguchi H. Synthesis of ammonia using microwave discharge at atmospheric pressure. Thin Solid Films, 2008, 516(13): 4446–4451
CrossRef
Google scholar
|
[78] |
Bogaerts A, Tu X, Whitehead J C.
CrossRef
Google scholar
|
[79] |
Wang X, Du X, Chen K.
CrossRef
Google scholar
|
[80] |
Qu Z, Zhou R, Sun J.
CrossRef
Google scholar
|
[81] |
Peng P, Li Y, Cheng Y.
CrossRef
Google scholar
|
[82] |
Shah J, Wu T, Lucero J.
CrossRef
Google scholar
|
[83] |
Iwamoto M, Akiyama M, Aihara K.
CrossRef
Google scholar
|
[84] |
Hosseini H. Dielectric barrier discharge plasma catalysis as an alternative approach for the synthesis of ammonia: A review. RSC Advances, 2023, 13(40): 28211–28223
CrossRef
Google scholar
|
[85] |
Rouwenhorst K H R, Mani S, Lefferts L. Improving the energy yield of plasma-based ammonia synthesis with in situ adsorption. ACS Sustainable Chemistry & Engineering, 2022, 10(6): 1994–2000
CrossRef
Google scholar
|
[86] |
Gorky F, Lucero J M, Crawford J M.
CrossRef
Google scholar
|
[87] |
GorkyFNamboACarreonM A,
|
[88] |
Guo H, Wang M, Liu J.
CrossRef
Google scholar
|
[89] |
Barboun P, Mehta P, Herrera F A.
CrossRef
Google scholar
|
[90] |
Chen Z, Koel B E, Sundaresan S. Plasma-assisted catalysis for ammonia synthesis in a dielectric barrier discharge reactor: Key surface reaction steps and potential causes of low energy yield. Journal of Physics. D, Applied Physics, 2022, 55(5): 055202
CrossRef
Google scholar
|
[91] |
Hu X, Zhu X, Wu X.
CrossRef
Google scholar
|
[92] |
Peng P, Cheng Y, Hatzenbeller R.
CrossRef
Google scholar
|
[93] |
Zhao Y, Li K, Du J.
CrossRef
Google scholar
|
[94] |
Zhao H, Song G, Chen Z.
CrossRef
Google scholar
|
[95] |
Li S, Shao Y, Chen H.
CrossRef
Google scholar
|
[96] |
Changhai L, Zhaobin W, Qin X.
CrossRef
Google scholar
|
[97] |
Wang Y, Yang W, Xu S.
CrossRef
Google scholar
|
[98] |
Winter L R, Ashford B, Hong J.
CrossRef
Google scholar
|
[99] |
Wang Y, Craven M, Yu X.
CrossRef
Google scholar
|
[100] |
Liu Y, Wang C W, Xu X F.
CrossRef
Google scholar
|
[101] |
Rouwenhorst K H R, Kim H H. Lefferts vibrationally excited activation of N2 in plasma-enhanced catalytic ammonia synthesis: A kinetic analysis. ACS Sustainable Chemistry & Engineering, 2019, 7(20): 17515–17522
CrossRef
Google scholar
|
[102] |
Shao K, Mesbah A. A study on the role of electric field in low-temperature plasma catalytic ammonia synthesis via integrated density functional theory and microkinetic modeling. JACS Au, 2024, 4(2): 525–544
CrossRef
Google scholar
|
[103] |
Brown S, Ahmat Ibrahim S, Robinson B R.
CrossRef
Google scholar
|
[104] |
Andersen J A, Holm M C, van ’t Veer K.
CrossRef
Google scholar
|
[105] |
Peng P, Chen P, Addy M.
CrossRef
Google scholar
|
[106] |
Zhang X, Wang Y, Liu C.
CrossRef
Google scholar
|
[107] |
Long J, Chen S, Zhang Y.
CrossRef
Google scholar
|
[108] |
Gao J, Jiang B, Ni C.
CrossRef
Google scholar
|
[109] |
Shin H, Jung S, Bae S.
|
[110] |
Ren Y, Yu C, Wang L.
CrossRef
Google scholar
|
[111] |
Li L, Tang C, Cui X.
CrossRef
Google scholar
|
[112] |
Sun J, Alam D, Daiyan R.
CrossRef
Google scholar
|
[113] |
Liu Z, Tian Y, Niu G.
CrossRef
Google scholar
|
[114] |
Sakakura T, Murakami N, Takatsuji Y.
CrossRef
Google scholar
|
[115] |
Zhou D, Zhou R, Zhou R.
CrossRef
Google scholar
|
[116] |
Takahashi J, Sasaki K. Production rates and destruction frequencies of ammonia in inductively coupled H2O/N2 and H2/N2 plasmas. Contributions to Plasma Physics, 2023, 64(3): e202300167
CrossRef
Google scholar
|
[117] |
RamoyMShiraiNSasakiK. Catalyst-free ammonia synthesis using DC-driven atmospheric-pressure plasma in contact with liquid. Journal of Physics D: Applied Physics, 2024, 57(1)
|
[118] |
Haruyama T, Namise T, Shimoshimizu N.
CrossRef
Google scholar
|
[119] |
Winter L R, Chen J G. N2 fixation by plasma-activated processes. Joule, 2021, 5(2): 300–315
CrossRef
Google scholar
|
[120] |
Rouwenhorst K H R, Lefferts L. Feasibility study of plasma-catalytic ammonia synthesis for energy storage applications. Catalysts, 2020, 10(9): 999
CrossRef
Google scholar
|
/
〈 | 〉 |