Advances in doping strategies for sodium transition metal oxides cathodes: A review
Received date: 26 Sep 2023
Accepted date: 15 Nov 2023
Published date: 15 Apr 2024
Copyright
The electrochemistry of cathode materials for sodium-ion batteries differs significantly from lithium-ion batteries and offers distinct advantages. Overall, the progress of commercializing sodium-ion batteries is currently impeded by the inherent inefficiencies exhibited by these cathode materials, which include insufficient conductivity, slow kinetics, and substantial volume changes throughout the process of intercalation and deintercalation cycles. Consequently, numerous methodologies have been utilized to tackle these challenges, encompassing structural modulation, surface modification, and elemental doping. This paper aims to highlight fundamental principles and strategies for the development of sodium transition metal oxide cathodes. Specifically, it emphasizes the role of various elemental doping techniques in initiating anionic redox reactions, improving cathode stability, and enhancing the operational voltage of these cathodes, aiming to provide readers with novel perspectives on the design of sodium metal oxide cathodes through the doping approach, as well as address the current obstacles that can be overcome/alleviated through these dopant strategies.
Key words: sodium-ion batteries; transition metal cathode; doping strategy
Zhijing ZHANG , Haoze ZHANG , Yaopeng WU , Wei YAN , Jiujun ZHANG , Yun ZHENG , Lanting QIAN . Advances in doping strategies for sodium transition metal oxides cathodes: A review[J]. Frontiers in Energy, 2024 , 18(2) : 141 -159 . DOI: 10.1007/s11708-024-0918-8
1 |
Nishi Y. Lithium-ion secondary batteries: Past 10 years and the future. Journal of Power Sources, 2001, 100(1–2): 101–106
|
2 |
Qian L, Durairaj S, Prins S, Chen A. Nanomaterials based electrochemical sensors and biosensors for the detection of pharmaceutical compounds. Biosensors and Bioelectronics, 2021, 175: 112836
|
3 |
Deng D. Li-ion batteries: Basics, progress, and challenges. Energy Science & Engineering, 2015, 3(5): 385–418
|
4 |
Etacheri V, Marom R, Elazari R.
|
5 |
Abraham K M. How comparable are sodium-ion batteries to lithium-ion counterparts?. ACS Energy Letters, 2020, 5(11): 3544–3547
|
6 |
Yabuuchi N, Kubota K, Dahbi M.
|
7 |
Mariyappan S, Wang Q, Tarascon J M. Will sodium layered oxides ever be competitive for sodium-ion battery applications?. Journal of the Electrochemical Society, 2018, 165(16): A3714–A3722
|
8 |
Kubota K, Komaba S. Review—Practical issues and future perspective for Na-ion batteries. Journal of the Electrochemical Society, 2015, 162(14): A2538–A2550
|
9 |
MolendaJDelmasCHagenmullerP. Electronic and electrochemical properties of NaxCoO2−y cathode. Solid State Ionics, 1983, 9–10: 431–435
|
10 |
Wang Y, Xiao R, Hu Y S.
|
11 |
Liu Q, Hu Z, Li W.
|
12 |
Jin T, Wang P, Wang Q.
|
13 |
Yang J, Tang M, Liu H.
|
14 |
Qian L, Thiruppathi A R, van der Zalm J.
|
15 |
Wang P F, Yao H R, Liu X Y.
|
16 |
Clément R J, Bruce P G, Grey C P. Review—Manganese-based P2-type transition metal oxides as sodium-ion battery cathode materials. Journal of the Electrochemical Society, 2015, 162(14): A2589–A2604
|
17 |
Xu J, Lee D H, Clément R J.
|
18 |
Ghosh A, Senthilkumar B, Ghosh S.
|
19 |
Zheng S, Zhong G, McDonald M J.
|
20 |
Billaud J, Singh G, Armstrong A R.
|
21 |
Wang P F, You Y, Yin Y X.
|
22 |
Siriwardena D P, Fernando J F S, Wang T.
|
23 |
Feng J, Luo S, Wang J.
|
24 |
Ramasamy H V, Kaliyappan K, Thangavel R.
|
25 |
Peng B, Chen Y, Zhao L.
|
26 |
Park Y J, Choi J U, Jo J H.
|
27 |
Kang W, Zhang Z, Lee P K.
|
28 |
Zheng L, Li J, Obrovac M N. Crystal structures and electrochemical performance of air-stable Na2/3Ni1/3–xCuxMn2/3O2 in sodium cells. Chemistry of Materials, 2017, 29(4): 1623–1631
|
29 |
Yang Q, Wang P F, Guo J Z.
|
30 |
Wang J, He X, Zhou D.
|
31 |
Bucher N, Hartung S, Franklin J B.
|
32 |
Li Z Y, Zhang J, Gao R.
|
33 |
Fu C, Wang J, Li Y.
|
34 |
Bae E G, Jeong J, Han S, et al. Calcium-doping for structure stabilization of sodium transition metal oxide cathodes in sodium ion batteries. ECS Meeting Abstracts, 2014, MA2014–04: 2014–04
|
35 |
Matsui M, Mizukoshi F, Hasegawa H.
|
36 |
Yu T Y, Kim J, Hwang J Y.
|
37 |
Shen Q, Liu Y, Zhao X.
|
38 |
Peng B, Chen Y, Wang F.
|
39 |
Li Q, Li G, Fu C.
|
40 |
Wang K, Wu Z G, Zhang T.
|
41 |
Wang C, Liu L, Zhao S.
|
42 |
Wang Q C, Meng J K, Yue X Y.
|
43 |
Li X, Wang T, Yuan Y.
|
44 |
HuangYZhuYNieA,
|
45 |
Zhang Q, Huang Y, Liu Y.
|
46 |
Shi W J, Yan Y W, Chi C.
|
47 |
Chen H, Wu Z, Zhong Y.
|
48 |
Liu K, Tan S, Moon J.
|
49 |
Kang W, Ma P, Liu Z.
|
50 |
Liu G, Xu W, Wu J.
|
51 |
Yu T Y, Sun Y K. A fluorinated O3-type layered cathode for long-life sodium-ion batteries. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2022, 10(44): 23639–23648
|
52 |
Wang Y, Wang X, Li X.
|
53 |
Guo Z, Li X, Lyu Y.
|
54 |
Wang X, Dong X, Feng X.
|
55 |
Qian L, Or T, Zheng Y.
|
56 |
Qian L, Zheng Y, Or Y.
|
57 |
Wang J, Teng Y, Su G.
|
58 |
Pei Q, Lu M, Liu Z.
|
59 |
Guo S, Han H, Guo S.
|
60 |
Liu Z, Zhou C, Liu J.
|
61 |
DongXWangXLuZ,
|
62 |
Zheng Y M, Huang X B, Meng X M.
|
63 |
Li F, Tian Y, Sun Y.
|
64 |
Anilkumar A, Nair N, Nair S V.
|
65 |
Wang P F, You Y, Yin Y X.
|
66 |
Wu X, Guo J, Wang D.
|
67 |
Wang L, Sun Y G, Hu L L.
|
68 |
Yoshida H, Yabuuchi N, Kubota K.
|
69 |
Yang Q, Wang P F, Guo J Z.
|
70 |
Hou P, Sun Y, Li F.
|
71 |
Li Z Y, Zhang J, Gao R.
|
72 |
Jin T, Wang P F, Wang Q C.
|
73 |
Kim D, Kang S H, Slater M.
|
74 |
de la Llave E, Talaie E, Levi E.
|
75 |
Clément R J, Xu J, Middlemiss D S.
|
76 |
Lee J, Koo S, Lee J.
|
77 |
Zhao Q, Butt F K, Yang M.
|
78 |
Hou P, Li F, Wang Y.
|
79 |
Oh S M, Myung S T, Yoon C S.
|
80 |
Keller M, Buchholz D, Passerini S. Cathode materials: Layered Na-ion cathodes with outstanding performance resulting from the synergetic effect of mixed P- and O-type phases. Advanced Energy Materials, 2016, 6(3): aenm.201670018
|
81 |
Oh S M, Myung S T, Hwang J Y.
|
82 |
Vassilaras P, Toumar A J, Ceder G. Electrochemical properties of NaNi1/3Co1/3Fe1/3O2 as a cathode material for Na-ion batteries. Electrochemistry Communications, 2014, 38: 79–81
|
83 |
Thorne J S, Dunlap R A, Obrovac M N. Investigation of P2-Na2/3Mn1/3Fe1/3Co1/3O2 for Na-ion battery positive electrodes. Journal of the Electrochemical Society, 2014, 161(14): A2232–A2236
|
84 |
Mu L, Xu S, Li Y.
|
85 |
Wang Q, Mariyappan S, Vergnet J.
|
86 |
Yao H R, Wang P F, Gong Y.
|
87 |
Wang Y, Xiao R, Hu Y S.
|
88 |
Peng B, Zhou Z, Xu J.
|
89 |
Xiao L, Ji F, Zhang J.
|
90 |
Wang P, Xin H, Zuo T.
|
91 |
Qian L, Thiruppathi A R, Elmahdy R.
|
92 |
Wang K, Zhang Z, Cheng S.
|
93 |
Leng M, Bi J, Wang W.
|
/
〈 | 〉 |