Advances in doping strategies for sodium transition metal oxides cathodes: A review
Zhijing ZHANG, Haoze ZHANG, Yaopeng WU, Wei YAN, Jiujun ZHANG, Yun ZHENG, Lanting QIAN
Advances in doping strategies for sodium transition metal oxides cathodes: A review
The electrochemistry of cathode materials for sodium-ion batteries differs significantly from lithium-ion batteries and offers distinct advantages. Overall, the progress of commercializing sodium-ion batteries is currently impeded by the inherent inefficiencies exhibited by these cathode materials, which include insufficient conductivity, slow kinetics, and substantial volume changes throughout the process of intercalation and deintercalation cycles. Consequently, numerous methodologies have been utilized to tackle these challenges, encompassing structural modulation, surface modification, and elemental doping. This paper aims to highlight fundamental principles and strategies for the development of sodium transition metal oxide cathodes. Specifically, it emphasizes the role of various elemental doping techniques in initiating anionic redox reactions, improving cathode stability, and enhancing the operational voltage of these cathodes, aiming to provide readers with novel perspectives on the design of sodium metal oxide cathodes through the doping approach, as well as address the current obstacles that can be overcome/alleviated through these dopant strategies.
sodium-ion batteries / transition metal cathode / doping strategy
[1] |
Nishi Y. Lithium-ion secondary batteries: Past 10 years and the future. Journal of Power Sources, 2001, 100(1–2): 101–106
CrossRef
Google scholar
|
[2] |
Qian L, Durairaj S, Prins S, Chen A. Nanomaterials based electrochemical sensors and biosensors for the detection of pharmaceutical compounds. Biosensors and Bioelectronics, 2021, 175: 112836
|
[3] |
Deng D. Li-ion batteries: Basics, progress, and challenges. Energy Science & Engineering, 2015, 3(5): 385–418
CrossRef
Google scholar
|
[4] |
Etacheri V, Marom R, Elazari R.
CrossRef
Google scholar
|
[5] |
Abraham K M. How comparable are sodium-ion batteries to lithium-ion counterparts?. ACS Energy Letters, 2020, 5(11): 3544–3547
CrossRef
Google scholar
|
[6] |
Yabuuchi N, Kubota K, Dahbi M.
CrossRef
Google scholar
|
[7] |
Mariyappan S, Wang Q, Tarascon J M. Will sodium layered oxides ever be competitive for sodium-ion battery applications?. Journal of the Electrochemical Society, 2018, 165(16): A3714–A3722
CrossRef
Google scholar
|
[8] |
Kubota K, Komaba S. Review—Practical issues and future perspective for Na-ion batteries. Journal of the Electrochemical Society, 2015, 162(14): A2538–A2550
CrossRef
Google scholar
|
[9] |
MolendaJDelmasCHagenmullerP. Electronic and electrochemical properties of NaxCoO2−y cathode. Solid State Ionics, 1983, 9–10: 431–435
|
[10] |
Wang Y, Xiao R, Hu Y S.
CrossRef
Google scholar
|
[11] |
Liu Q, Hu Z, Li W.
CrossRef
Google scholar
|
[12] |
Jin T, Wang P, Wang Q.
CrossRef
Google scholar
|
[13] |
Yang J, Tang M, Liu H.
CrossRef
Google scholar
|
[14] |
Qian L, Thiruppathi A R, van der Zalm J.
CrossRef
Google scholar
|
[15] |
Wang P F, Yao H R, Liu X Y.
CrossRef
Google scholar
|
[16] |
Clément R J, Bruce P G, Grey C P. Review—Manganese-based P2-type transition metal oxides as sodium-ion battery cathode materials. Journal of the Electrochemical Society, 2015, 162(14): A2589–A2604
CrossRef
Google scholar
|
[17] |
Xu J, Lee D H, Clément R J.
CrossRef
Google scholar
|
[18] |
Ghosh A, Senthilkumar B, Ghosh S.
CrossRef
Google scholar
|
[19] |
Zheng S, Zhong G, McDonald M J.
CrossRef
Google scholar
|
[20] |
Billaud J, Singh G, Armstrong A R.
CrossRef
Google scholar
|
[21] |
Wang P F, You Y, Yin Y X.
CrossRef
Google scholar
|
[22] |
Siriwardena D P, Fernando J F S, Wang T.
CrossRef
Google scholar
|
[23] |
Feng J, Luo S, Wang J.
CrossRef
Google scholar
|
[24] |
Ramasamy H V, Kaliyappan K, Thangavel R.
CrossRef
Google scholar
|
[25] |
Peng B, Chen Y, Zhao L.
CrossRef
Google scholar
|
[26] |
Park Y J, Choi J U, Jo J H.
CrossRef
Google scholar
|
[27] |
Kang W, Zhang Z, Lee P K.
CrossRef
Google scholar
|
[28] |
Zheng L, Li J, Obrovac M N. Crystal structures and electrochemical performance of air-stable Na2/3Ni1/3–xCuxMn2/3O2 in sodium cells. Chemistry of Materials, 2017, 29(4): 1623–1631
CrossRef
Google scholar
|
[29] |
Yang Q, Wang P F, Guo J Z.
CrossRef
Google scholar
|
[30] |
Wang J, He X, Zhou D.
CrossRef
Google scholar
|
[31] |
Bucher N, Hartung S, Franklin J B.
CrossRef
Google scholar
|
[32] |
Li Z Y, Zhang J, Gao R.
CrossRef
Google scholar
|
[33] |
Fu C, Wang J, Li Y.
CrossRef
Google scholar
|
[34] |
Bae E G, Jeong J, Han S, et al. Calcium-doping for structure stabilization of sodium transition metal oxide cathodes in sodium ion batteries. ECS Meeting Abstracts, 2014, MA2014–04: 2014–04
|
[35] |
Matsui M, Mizukoshi F, Hasegawa H.
CrossRef
Google scholar
|
[36] |
Yu T Y, Kim J, Hwang J Y.
CrossRef
Google scholar
|
[37] |
Shen Q, Liu Y, Zhao X.
CrossRef
Google scholar
|
[38] |
Peng B, Chen Y, Wang F.
CrossRef
Google scholar
|
[39] |
Li Q, Li G, Fu C.
CrossRef
Google scholar
|
[40] |
Wang K, Wu Z G, Zhang T.
CrossRef
Google scholar
|
[41] |
Wang C, Liu L, Zhao S.
CrossRef
Google scholar
|
[42] |
Wang Q C, Meng J K, Yue X Y.
CrossRef
Google scholar
|
[43] |
Li X, Wang T, Yuan Y.
CrossRef
Google scholar
|
[44] |
HuangYZhuYNieA,
|
[45] |
Zhang Q, Huang Y, Liu Y.
CrossRef
Google scholar
|
[46] |
Shi W J, Yan Y W, Chi C.
CrossRef
Google scholar
|
[47] |
Chen H, Wu Z, Zhong Y.
CrossRef
Google scholar
|
[48] |
Liu K, Tan S, Moon J.
CrossRef
Google scholar
|
[49] |
Kang W, Ma P, Liu Z.
CrossRef
Google scholar
|
[50] |
Liu G, Xu W, Wu J.
CrossRef
Google scholar
|
[51] |
Yu T Y, Sun Y K. A fluorinated O3-type layered cathode for long-life sodium-ion batteries. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2022, 10(44): 23639–23648
CrossRef
Google scholar
|
[52] |
Wang Y, Wang X, Li X.
CrossRef
Google scholar
|
[53] |
Guo Z, Li X, Lyu Y.
CrossRef
Google scholar
|
[54] |
Wang X, Dong X, Feng X.
CrossRef
Google scholar
|
[55] |
Qian L, Or T, Zheng Y.
CrossRef
Google scholar
|
[56] |
Qian L, Zheng Y, Or Y.
CrossRef
Google scholar
|
[57] |
Wang J, Teng Y, Su G.
CrossRef
Google scholar
|
[58] |
Pei Q, Lu M, Liu Z.
CrossRef
Google scholar
|
[59] |
Guo S, Han H, Guo S.
CrossRef
Google scholar
|
[60] |
Liu Z, Zhou C, Liu J.
CrossRef
Google scholar
|
[61] |
DongXWangXLuZ,
|
[62] |
Zheng Y M, Huang X B, Meng X M.
CrossRef
Google scholar
|
[63] |
Li F, Tian Y, Sun Y.
CrossRef
Google scholar
|
[64] |
Anilkumar A, Nair N, Nair S V.
CrossRef
Google scholar
|
[65] |
Wang P F, You Y, Yin Y X.
CrossRef
Google scholar
|
[66] |
Wu X, Guo J, Wang D.
CrossRef
Google scholar
|
[67] |
Wang L, Sun Y G, Hu L L.
CrossRef
Google scholar
|
[68] |
Yoshida H, Yabuuchi N, Kubota K.
CrossRef
Google scholar
|
[69] |
Yang Q, Wang P F, Guo J Z.
CrossRef
Google scholar
|
[70] |
Hou P, Sun Y, Li F.
CrossRef
Google scholar
|
[71] |
Li Z Y, Zhang J, Gao R.
CrossRef
Google scholar
|
[72] |
Jin T, Wang P F, Wang Q C.
CrossRef
Google scholar
|
[73] |
Kim D, Kang S H, Slater M.
CrossRef
Google scholar
|
[74] |
de la Llave E, Talaie E, Levi E.
CrossRef
Google scholar
|
[75] |
Clément R J, Xu J, Middlemiss D S.
CrossRef
Google scholar
|
[76] |
Lee J, Koo S, Lee J.
CrossRef
Google scholar
|
[77] |
Zhao Q, Butt F K, Yang M.
CrossRef
Google scholar
|
[78] |
Hou P, Li F, Wang Y.
CrossRef
Google scholar
|
[79] |
Oh S M, Myung S T, Yoon C S.
CrossRef
Google scholar
|
[80] |
Keller M, Buchholz D, Passerini S. Cathode materials: Layered Na-ion cathodes with outstanding performance resulting from the synergetic effect of mixed P- and O-type phases. Advanced Energy Materials, 2016, 6(3): aenm.201670018
CrossRef
Google scholar
|
[81] |
Oh S M, Myung S T, Hwang J Y.
CrossRef
Google scholar
|
[82] |
Vassilaras P, Toumar A J, Ceder G. Electrochemical properties of NaNi1/3Co1/3Fe1/3O2 as a cathode material for Na-ion batteries. Electrochemistry Communications, 2014, 38: 79–81
CrossRef
Google scholar
|
[83] |
Thorne J S, Dunlap R A, Obrovac M N. Investigation of P2-Na2/3Mn1/3Fe1/3Co1/3O2 for Na-ion battery positive electrodes. Journal of the Electrochemical Society, 2014, 161(14): A2232–A2236
CrossRef
Google scholar
|
[84] |
Mu L, Xu S, Li Y.
CrossRef
Google scholar
|
[85] |
Wang Q, Mariyappan S, Vergnet J.
CrossRef
Google scholar
|
[86] |
Yao H R, Wang P F, Gong Y.
CrossRef
Google scholar
|
[87] |
Wang Y, Xiao R, Hu Y S.
CrossRef
Google scholar
|
[88] |
Peng B, Zhou Z, Xu J.
CrossRef
Google scholar
|
[89] |
Xiao L, Ji F, Zhang J.
CrossRef
Google scholar
|
[90] |
Wang P, Xin H, Zuo T.
CrossRef
Google scholar
|
[91] |
Qian L, Thiruppathi A R, Elmahdy R.
CrossRef
Google scholar
|
[92] |
Wang K, Zhang Z, Cheng S.
CrossRef
Google scholar
|
[93] |
Leng M, Bi J, Wang W.
CrossRef
Google scholar
|
/
〈 | 〉 |