Strain engineering of Pt-based electrocatalysts for oxygen reaction reduction
Received date: 28 Sep 2023
Accepted date: 28 Dec 2023
Copyright
Proton exchange membrane fuel cells (PEMFCs) are playing irreplaceable roles in the construction of the future sustainable energy system. However, the insufficient performance of platinum (Pt)-based electrocatalysts for oxygen reduction reaction (ORR) hinders the overall efficiency of PEMFCs. Engineering the surface strain of catalysts is considered an effective way to tune their electronic structures and therefore optimize catalytic behavior. In this paper, insights into strain engineering for improving Pt-based catalysts toward ORR are elaborated in detail. First, recent advances in understanding the strain effects on ORR catalysts are comprehensively discussed. Then, strain engineering methodologies for adjusting Pt-based catalysts are comprehensively discussed. Finally, further information on the various challenges and potential prospects for strain modulation of Pt-based catalysts is provided.
Zeyu WANG , Yanru LIU , Shun CHEN , Yun ZHENG , Xiaogang FU , Yan ZHANG , Wanglei WANG . Strain engineering of Pt-based electrocatalysts for oxygen reaction reduction[J]. Frontiers in Energy, 2024 , 18(2) : 241 -262 . DOI: 10.1007/s11708-024-0932-x
1 |
Bai J, Yang L, Jin Z.
|
2 |
Zhao J, Dong K, Dong X.
|
3 |
Yuan X, Su C W, Umar M, et al. The race to zero emissions: Can renewable energy be the path to carbon neutrality? Journal of Environmental Management, 2022, 308: 114648 10.1016/j.jenvman.2022.114648
|
4 |
Li H, Zhao H, Tao B.
|
5 |
Zhao X, Sasaki K. Advanced Pt-based core-shell electrocatalysts for fuel cell cathodes. Accounts of Chemical Research, 2022, 55(9): 1226–1236
|
6 |
Kong Z J, Zhang D C, Lu Y X.
|
7 |
Mao Z, Tang X, An X.
|
8 |
Zhang J, Yuan Y, Gao L.
|
9 |
Huang L, Zaman S, Tian X.
|
10 |
Xiao F, Wang Y C, Wu Z P.
|
11 |
Mavrikakis M, Hammer B, Nørskov J K. Effect of strain on the reactivity of metal surfaces. Physical Review Letters, 1998, 81(13): 2819–2822
|
12 |
Hammer B, Norskov J K. Theoretical Surface Science and Catalysis—Calculations and Concepts. Academic Press: Cambridge, MA, USA, 2000, 45: 71–129. ISBN: 0360-0564.
|
13 |
Wang X M, Orikasa Y, Takesue Y.
|
14 |
Suo N, Cao L, Qin X.
|
15 |
Zhang J, Yin S, Yin H M. Strain engineering to enhance the oxidation reduction reaction performance of atomic-layer Pt on nanoporous gold. ACS Applied Energy Materials, 2020, 3(12): 11956–11963
|
16 |
Ahn H, Ahn H, An J H.
|
17 |
Luo Y, Lou W, Feng H.
|
18 |
Kim S H, Kang Y, Ham H C. First-principles study of Pt-based bifunctional oxygen evolution & reduction electrocatalyst: Interplay of strain and ligand effects. Energies, 2021, 14(22): 7814
|
19 |
Hammer B, Nørskov J K. Electronic factors determining the reactivity of metal surfaces. Surface Science, 1995, 343(3): 211–220
|
20 |
Qi X Q, Yang T T, Li P B.
|
21 |
Gao P, Pu M, Chen Q J.
|
22 |
Jiao S, Fu X, Huang H. Descriptors for the evaluation of electrocatalytic reactions: d-band theory and beyond. Advanced Functional Materials, 2022, 32(4): 2107651
|
23 |
Zhang F, Ji R J, Zhu X Y.
|
24 |
Zhang X Q, Wang J Q, Zhao Y. Enhancement mechanism of Pt/Pd-based catalysts for oxygen reduction reaction. Nanomaterials, 2023, 13(7): 1275
|
25 |
Campos-Roldán C A, Chattot R, Filhol J S.
|
26 |
Wang Y, Wang D S, Li Y D. A fundamental comprehension and recent progress in advanced Pt-based ORR nanocatalysts. SmartMat, 2021, 2(1): 56–75
|
27 |
Liu X, Liang J S, Li Q. Design principle and synthetic approach of intermetallic Pt−M alloy oxygen reduction catalysts for fuel cells. Chinese Journal of Catalysis, 2023, 45: 17–26
|
28 |
Zhu W, Yuan H, Liao F.
|
29 |
Nørskov J K, Rossmeisl J, Logadottir A.
|
30 |
Dickens C F, Montoya J H, Kulkarni A R.
|
31 |
Kulkarni A, Siahrostami S, Patel A.
|
32 |
Wu M H, Chen C L, Zhao Y Z.
|
33 |
Xu Q N, Li G W, Zhang Y.
|
34 |
Zhu X F, Tan X, Wu K H.
|
35 |
Men Y N, Su X Z, Li P.
|
36 |
Garcia-Muelas R, Lopez N. Enhancement of the oxygen reduction reaction activity of Pt by tuning its d-band center via transition metal oxide support interactions. Nature Communications, 2019, 10(1): 4687
|
37 |
Ando F, Gunji T, Tanabe T.
|
38 |
Vojvodic A, Nørskov J K, Abild-Pedersen F. Electronic structure effects in transition metal surface chemistry. Topics in Catalysis, 2013, 57(1–4): 25–32
|
39 |
Hammer B, Norskov J K. Why gold is the noblest of all the metals. Nature, 1995, 376(6537): 238–240
|
40 |
Gross A. Adsorption at nanostructured surfaces from first principles. Journal of Computational and Theoretical Nanoscience, 2008, 5(5): 894–922
|
41 |
Fan C M, Li G M, Gu J J, et al. Molten-salt electrochemical deoxidation synthesis of platinum−neodymium nanoalloy catalysts for oxygen reduction reaction. Small, 2023, 19(40): 2300110
|
42 |
Zhang Y P, Su Z X, Wei H H.
|
43 |
Zhao Y, Wu Y, Liu J.
|
44 |
Kattel S, Wang G F. Beneficial compressive strain for oxygen reduction reaction on Pt(111) surface. Journal of Chemical Physics, 2014, 141(12): 124713
|
45 |
Stamenkovic V, Mun B S, Mayrhofer K J.
|
46 |
Schnur S, Groß A. Strain and coordination effects in the adsorption properties of early transition metals: A density-functional theory study. Physical Review B: Condensed Matter and Materials Physics, 2010, 81(3): 033402
|
47 |
Chen H, Wu Q, Wang Y.
|
48 |
Escudero-Escribano M, Malacrida P, Hansen M H.
|
49 |
Ying J. Atomic-scale design of high-performance Pt-based electrocatalysts for oxygen reduction reaction. Frontiers in Chemistry, 2021, 9: 753604
|
50 |
Bu L Z, Zhang N, Guo S J.
|
51 |
Li J R, Sharma S, Liu X M.
|
52 |
Pavlets A, Pankov I, Alekseenko A. Electrochemical activation and its prolonged effect on the durability of bimetallic Pt-based electrocatalysts for PEMFCs. Inorganics, 2023, 11(1): 45
|
53 |
Belenov S, Pavlets A, Paperzh K.
|
54 |
Chen Y, Zhao X, Yan H.
|
55 |
Becknell N, Kang Y J, Chen C.
|
56 |
Şahin O, Akdag A, Horoz S.
|
57 |
Du M, Cui L, Cao Y.
|
58 |
Mashindi V, Mente P, Phaahlamohlaka T N.
|
59 |
Kong Z J, Maswadeh Y, Vargas J A.
|
60 |
Wu J F, Shan S Y, Cronk H.
|
61 |
Hurley N, Mcguire S C, Wong S S. Assessing the catalytic behavior of platinum group metal-based ultrathin nanowires using X-ray absorption spectroscopy. ACS Applied Materials & Interfaces, 2021, 13(49): 58253–58260
|
62 |
Feiten F E, Takahashi S, Sekizawa O.
|
63 |
Huang H, Li K, Chen Z.
|
64 |
Sapkota P, Lim S, Aguey-Zinsou K F. Superior performance of an iron−platinum/vulcan carbon fuel cell catalyst. Catalysts, 2022, 12(11): 1369
|
65 |
Oubraham A, Ion-Ebrasu D, Vasut F.
|
66 |
Spanos I, Dideriksen K, Kirkensgaard J J K.
|
67 |
Jackson C, Smith G T, Mpofu N.
|
68 |
Xie M H, Lyu Z H, Chen R H.
|
69 |
Tian W, Wang Y, Fu W.
|
70 |
Zhang Y F, Qin J, Leng D Y.
|
71 |
Guan J, Yang S, Liu T.
|
72 |
Wang K, Wang Y, Geng S.
|
73 |
Zhu Y, Wang S, Luo Q.
|
74 |
Hu Y, Shen T, Zhao X.
|
75 |
Mondal S, Kumar M M, Raj C R. Electrochemically dealloyed Cu−Pt nanostructures for oxygen reduction and formic acid oxidation. ACS Applied Nano Materials, 2021, 4(12): 13149–13157
|
76 |
Song T W, Chen M X, Yin P.
|
77 |
Wang H T, Xu S C, Tsai C.
|
78 |
Feng Y G, Huang B L, Yang C Y.
|
79 |
Gong K P, Su D, Adzic R R. Platinum-monolayer shell on AuNi0.5Fe nanoparticle core electrocatalyst with high activity and stability for the oxygen reduction reaction. Journal of the American Chemical Society, 2010, 132(41): 14364–14366
|
80 |
Feng Y G, Zhao Z L, Li F.
|
81 |
Mahmood A, He D, Talib S H.
|
82 |
Qin Y, Zhang W, Guo K.
|
83 |
Guo S J, Wang L, Dong S J.
|
84 |
Xing Y C, Cai Y, Vukmirovic M B.
|
85 |
Javaheri M. Investigating the influence of Pd situation (as core or shell) in synthesized catalyst for ORR in PEMFC. International Journal of Hydrogen Energy, 2015, 40(20): 6661–6671
|
86 |
Adzic R R, Zhang J, Sasaki K.
|
87 |
Kong J, Qin Y H, Wang T L.
|
88 |
Chong L, Wen J G, Kubal J.
|
89 |
Jiao W, Chen C, You W.
|
90 |
Lu Y, Zhang H, Wang Y.
|
91 |
Tetteh E B, Gyan-Barimah C, Lee H Y.
|
92 |
Cong Y, Wang H, Meng F.
|
93 |
Su K, Zhang H, Qian S.
|
94 |
Shi Y, Lee C, Tan X.
|
95 |
Dai Y, Chen S. AuPt core-shell electrocatalysts for oxygen reduction reaction through combining the spontaneous Pt deposition and redox replacement of underpotential-deposited Cu. International Journal of Hydrogen Energy, 2016, 41(48): 22976–22982
|
96 |
Lee C L, Huang K L, Tsai Y L.
|
97 |
Wang C, An C, Qin C.
|
98 |
Sasaki K, Naohara H, Choi Y.
|
99 |
Alia S M, Yan Y S, Pivovar B S. Galvanic displacement as a route to highly active and durable extended surface electrocatalysts. Catalysis Science & Technology, 2014, 4(10): 3589–3600
|
100 |
Zhu Y M, Peng J H, Zhu X R.
|
101 |
Pang F, Yao C, Li A, et al. Research progress of PtNi alloy catalysts for oxygen reduction reaction. Material Report, 2023, 37(1): 20070194-9 (in Chinese)
|
102 |
Li M, Hu Z, Li H.
|
103 |
Hu X, Liu T, Zhang X.
|
104 |
Lyu X, Zhang W, Liu S.
|
105 |
Jeon T Y, Yu S H, Yoo S J.
|
106 |
Liu D, Zhang Y, Liu H.
|
107 |
Sethuraman V A, Vairavapandian D, Lafouresse M C.
|
108 |
Chen H, Wang G, Gao T.
|
109 |
Mondal S, Bagchi D, Riyaz M.
|
110 |
Yan W, Cao S, Liu H.
|
111 |
Sarkar S, Peter S C. An overview on Pt3X electrocatalysts for oxygen reduction reaction. Chemistry, an Asian Journal, 2021, 16(10): 1184–1197
|
112 |
Xiao W, Lei W, Gong M.
|
113 |
Gunji T, Tanaka S, Inagawa T.
|
114 |
Ye X, Shao R Y, Yin P.
|
115 |
Chung D Y, Jun S W, Yoon G.
|
116 |
Kim H Y, Kim J Y, Joo S H. Pt-based intermetallic nanocatalysts for promoting the oxygen reduction reaction. Bulletin of the Korean Chemical Society, 2021, 42(5): 724–736
|
117 |
Kim H Y, Joo S H. Recent advances in nanostructured intermetallic electrocatalysts for renewable energy conversion reactions. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2020, 8(17): 8195–8217
|
118 |
Fracchia M, Ghigna P, Marelli M.
|
119 |
Sarkar S, Varghese M, Vinod C P.
|
120 |
Shao M, Odell J H, Peles A.
|
121 |
Xia Z, Zhu R, Yu R.
|
122 |
Luo M C, Qin Y N, Li M G.
|
123 |
Dubau L, Nelayah J, Asset T.
|
124 |
Gao P, Zhu Z, Ye X.
|
125 |
Dubau L, Nelayah J, Moldovan S.
|
126 |
Asset T, Chattot R, Drnec J.
|
127 |
Zhu E B, Li Y J, Chiu C Y.
|
128 |
Chattot R, Asset T, Bordet P.
|
129 |
Bu L, Huang B, Zhu Y.
|
130 |
Fan C, Huang Z, Hu X.
|
131 |
Marković N M, Schmidt T J, Stamenkovic V.
|
132 |
Sun L, Wang Q, Ma M.
|
133 |
Luo M C, Sun Y J, Zhang X.
|
134 |
Wang Y J, Zhao N, Fang B.
|
135 |
Wang C, Daimon H, Onodera T.
|
136 |
Zhang W, Li J, Wei Z. How size and strain effect synergistically improve electrocatalytic activity: A systematic investigation based on PtCoCu alloy nanocrystals. Small, 2023, 19(29): 2300112
|
137 |
Shao M, Peles A, Shoemaker K. Electrocatalysis on platinum nanoparticles: Particle size effect on oxygen reduction reaction activity. Nano Letters, 2011, 11(9): 3714–3719
|
138 |
Đukić T, Moriau L J, Pavko L.
|
139 |
Zaman S, Huang L, Douka A I.
|
140 |
Bu L Z, Ding J B, Guo S J.
|
141 |
Li D G, Wang C, Strmcnik D S.
|
142 |
An W, Liu P. Size and shape effects of Pd@Pt core-shell nanoparticles: Unique role of surface contraction and local structural flexibility. Journal of Physical Chemistry C, 2013, 117(31): 16144–16149
|
143 |
Li L, Ye X T, Xiao Q.
|
144 |
Li Y, Wang H H, Priest C.
|
145 |
Zheng X Q, Li L, Li J.
|
/
〈 | 〉 |