Strain engineering of Pt-based electrocatalysts for oxygen reaction reduction
Zeyu WANG, Yanru LIU, Shun CHEN, Yun ZHENG, Xiaogang FU, Yan ZHANG, Wanglei WANG
Strain engineering of Pt-based electrocatalysts for oxygen reaction reduction
Proton exchange membrane fuel cells (PEMFCs) are playing irreplaceable roles in the construction of the future sustainable energy system. However, the insufficient performance of platinum (Pt)-based electrocatalysts for oxygen reduction reaction (ORR) hinders the overall efficiency of PEMFCs. Engineering the surface strain of catalysts is considered an effective way to tune their electronic structures and therefore optimize catalytic behavior. In this paper, insights into strain engineering for improving Pt-based catalysts toward ORR are elaborated in detail. First, recent advances in understanding the strain effects on ORR catalysts are comprehensively discussed. Then, strain engineering methodologies for adjusting Pt-based catalysts are comprehensively discussed. Finally, further information on the various challenges and potential prospects for strain modulation of Pt-based catalysts is provided.
strain engineering / Pt-based catalysts / oxygen reduction reaction (ORR) / catalytic performance / proton exchange membrane fuel cells (PEMFCs)
[1] |
Bai J, Yang L, Jin Z.
CrossRef
Google scholar
|
[2] |
Zhao J, Dong K, Dong X.
CrossRef
Google scholar
|
[3] |
Yuan X, Su C W, Umar M, et al. The race to zero emissions: Can renewable energy be the path to carbon neutrality? Journal of Environmental Management, 2022, 308: 114648 10.1016/j.jenvman.2022.114648
|
[4] |
Li H, Zhao H, Tao B.
CrossRef
Google scholar
|
[5] |
Zhao X, Sasaki K. Advanced Pt-based core-shell electrocatalysts for fuel cell cathodes. Accounts of Chemical Research, 2022, 55(9): 1226–1236
CrossRef
Google scholar
|
[6] |
Kong Z J, Zhang D C, Lu Y X.
CrossRef
Google scholar
|
[7] |
Mao Z, Tang X, An X.
CrossRef
Google scholar
|
[8] |
Zhang J, Yuan Y, Gao L.
CrossRef
Google scholar
|
[9] |
Huang L, Zaman S, Tian X.
CrossRef
Google scholar
|
[10] |
Xiao F, Wang Y C, Wu Z P.
CrossRef
Google scholar
|
[11] |
Mavrikakis M, Hammer B, Nørskov J K. Effect of strain on the reactivity of metal surfaces. Physical Review Letters, 1998, 81(13): 2819–2822
CrossRef
Google scholar
|
[12] |
Hammer B, Norskov J K. Theoretical Surface Science and Catalysis—Calculations and Concepts. Academic Press: Cambridge, MA, USA, 2000, 45: 71–129. ISBN: 0360-0564.
|
[13] |
Wang X M, Orikasa Y, Takesue Y.
CrossRef
Google scholar
|
[14] |
Suo N, Cao L, Qin X.
CrossRef
Google scholar
|
[15] |
Zhang J, Yin S, Yin H M. Strain engineering to enhance the oxidation reduction reaction performance of atomic-layer Pt on nanoporous gold. ACS Applied Energy Materials, 2020, 3(12): 11956–11963
CrossRef
Google scholar
|
[16] |
Ahn H, Ahn H, An J H.
CrossRef
Google scholar
|
[17] |
Luo Y, Lou W, Feng H.
CrossRef
Google scholar
|
[18] |
Kim S H, Kang Y, Ham H C. First-principles study of Pt-based bifunctional oxygen evolution & reduction electrocatalyst: Interplay of strain and ligand effects. Energies, 2021, 14(22): 7814
CrossRef
Google scholar
|
[19] |
Hammer B, Nørskov J K. Electronic factors determining the reactivity of metal surfaces. Surface Science, 1995, 343(3): 211–220
CrossRef
Google scholar
|
[20] |
Qi X Q, Yang T T, Li P B.
CrossRef
Google scholar
|
[21] |
Gao P, Pu M, Chen Q J.
CrossRef
Google scholar
|
[22] |
Jiao S, Fu X, Huang H. Descriptors for the evaluation of electrocatalytic reactions: d-band theory and beyond. Advanced Functional Materials, 2022, 32(4): 2107651
CrossRef
Google scholar
|
[23] |
Zhang F, Ji R J, Zhu X Y.
CrossRef
Google scholar
|
[24] |
Zhang X Q, Wang J Q, Zhao Y. Enhancement mechanism of Pt/Pd-based catalysts for oxygen reduction reaction. Nanomaterials, 2023, 13(7): 1275
CrossRef
Google scholar
|
[25] |
Campos-Roldán C A, Chattot R, Filhol J S.
CrossRef
Google scholar
|
[26] |
Wang Y, Wang D S, Li Y D. A fundamental comprehension and recent progress in advanced Pt-based ORR nanocatalysts. SmartMat, 2021, 2(1): 56–75
CrossRef
Google scholar
|
[27] |
Liu X, Liang J S, Li Q. Design principle and synthetic approach of intermetallic Pt−M alloy oxygen reduction catalysts for fuel cells. Chinese Journal of Catalysis, 2023, 45: 17–26
CrossRef
Google scholar
|
[28] |
Zhu W, Yuan H, Liao F.
CrossRef
Google scholar
|
[29] |
Nørskov J K, Rossmeisl J, Logadottir A.
CrossRef
Google scholar
|
[30] |
Dickens C F, Montoya J H, Kulkarni A R.
CrossRef
Google scholar
|
[31] |
Kulkarni A, Siahrostami S, Patel A.
CrossRef
Google scholar
|
[32] |
Wu M H, Chen C L, Zhao Y Z.
CrossRef
Google scholar
|
[33] |
Xu Q N, Li G W, Zhang Y.
CrossRef
Google scholar
|
[34] |
Zhu X F, Tan X, Wu K H.
CrossRef
Google scholar
|
[35] |
Men Y N, Su X Z, Li P.
CrossRef
Google scholar
|
[36] |
Garcia-Muelas R, Lopez N. Enhancement of the oxygen reduction reaction activity of Pt by tuning its d-band center via transition metal oxide support interactions. Nature Communications, 2019, 10(1): 4687
CrossRef
Google scholar
|
[37] |
Ando F, Gunji T, Tanabe T.
CrossRef
Google scholar
|
[38] |
Vojvodic A, Nørskov J K, Abild-Pedersen F. Electronic structure effects in transition metal surface chemistry. Topics in Catalysis, 2013, 57(1–4): 25–32
|
[39] |
Hammer B, Norskov J K. Why gold is the noblest of all the metals. Nature, 1995, 376(6537): 238–240
CrossRef
Google scholar
|
[40] |
Gross A. Adsorption at nanostructured surfaces from first principles. Journal of Computational and Theoretical Nanoscience, 2008, 5(5): 894–922
CrossRef
Google scholar
|
[41] |
Fan C M, Li G M, Gu J J, et al. Molten-salt electrochemical deoxidation synthesis of platinum−neodymium nanoalloy catalysts for oxygen reduction reaction. Small, 2023, 19(40): 2300110
|
[42] |
Zhang Y P, Su Z X, Wei H H.
CrossRef
Google scholar
|
[43] |
Zhao Y, Wu Y, Liu J.
CrossRef
Google scholar
|
[44] |
Kattel S, Wang G F. Beneficial compressive strain for oxygen reduction reaction on Pt(111) surface. Journal of Chemical Physics, 2014, 141(12): 124713
CrossRef
Google scholar
|
[45] |
Stamenkovic V, Mun B S, Mayrhofer K J.
CrossRef
Google scholar
|
[46] |
Schnur S, Groß A. Strain and coordination effects in the adsorption properties of early transition metals: A density-functional theory study. Physical Review B: Condensed Matter and Materials Physics, 2010, 81(3): 033402
CrossRef
Google scholar
|
[47] |
Chen H, Wu Q, Wang Y.
CrossRef
Google scholar
|
[48] |
Escudero-Escribano M, Malacrida P, Hansen M H.
CrossRef
Google scholar
|
[49] |
Ying J. Atomic-scale design of high-performance Pt-based electrocatalysts for oxygen reduction reaction. Frontiers in Chemistry, 2021, 9: 753604
CrossRef
Google scholar
|
[50] |
Bu L Z, Zhang N, Guo S J.
CrossRef
Google scholar
|
[51] |
Li J R, Sharma S, Liu X M.
CrossRef
Google scholar
|
[52] |
Pavlets A, Pankov I, Alekseenko A. Electrochemical activation and its prolonged effect on the durability of bimetallic Pt-based electrocatalysts for PEMFCs. Inorganics, 2023, 11(1): 45
CrossRef
Google scholar
|
[53] |
Belenov S, Pavlets A, Paperzh K.
CrossRef
Google scholar
|
[54] |
Chen Y, Zhao X, Yan H.
CrossRef
Google scholar
|
[55] |
Becknell N, Kang Y J, Chen C.
CrossRef
Google scholar
|
[56] |
Şahin O, Akdag A, Horoz S.
CrossRef
Google scholar
|
[57] |
Du M, Cui L, Cao Y.
CrossRef
Google scholar
|
[58] |
Mashindi V, Mente P, Phaahlamohlaka T N.
CrossRef
Google scholar
|
[59] |
Kong Z J, Maswadeh Y, Vargas J A.
CrossRef
Google scholar
|
[60] |
Wu J F, Shan S Y, Cronk H.
CrossRef
Google scholar
|
[61] |
Hurley N, Mcguire S C, Wong S S. Assessing the catalytic behavior of platinum group metal-based ultrathin nanowires using X-ray absorption spectroscopy. ACS Applied Materials & Interfaces, 2021, 13(49): 58253–58260
CrossRef
Google scholar
|
[62] |
Feiten F E, Takahashi S, Sekizawa O.
CrossRef
Google scholar
|
[63] |
Huang H, Li K, Chen Z.
CrossRef
Google scholar
|
[64] |
Sapkota P, Lim S, Aguey-Zinsou K F. Superior performance of an iron−platinum/vulcan carbon fuel cell catalyst. Catalysts, 2022, 12(11): 1369
CrossRef
Google scholar
|
[65] |
Oubraham A, Ion-Ebrasu D, Vasut F.
CrossRef
Google scholar
|
[66] |
Spanos I, Dideriksen K, Kirkensgaard J J K.
CrossRef
Google scholar
|
[67] |
Jackson C, Smith G T, Mpofu N.
CrossRef
Google scholar
|
[68] |
Xie M H, Lyu Z H, Chen R H.
CrossRef
Google scholar
|
[69] |
Tian W, Wang Y, Fu W.
CrossRef
Google scholar
|
[70] |
Zhang Y F, Qin J, Leng D Y.
CrossRef
Google scholar
|
[71] |
Guan J, Yang S, Liu T.
CrossRef
Google scholar
|
[72] |
Wang K, Wang Y, Geng S.
CrossRef
Google scholar
|
[73] |
Zhu Y, Wang S, Luo Q.
CrossRef
Google scholar
|
[74] |
Hu Y, Shen T, Zhao X.
CrossRef
Google scholar
|
[75] |
Mondal S, Kumar M M, Raj C R. Electrochemically dealloyed Cu−Pt nanostructures for oxygen reduction and formic acid oxidation. ACS Applied Nano Materials, 2021, 4(12): 13149–13157
CrossRef
Google scholar
|
[76] |
Song T W, Chen M X, Yin P.
CrossRef
Google scholar
|
[77] |
Wang H T, Xu S C, Tsai C.
CrossRef
Google scholar
|
[78] |
Feng Y G, Huang B L, Yang C Y.
CrossRef
Google scholar
|
[79] |
Gong K P, Su D, Adzic R R. Platinum-monolayer shell on AuNi0.5Fe nanoparticle core electrocatalyst with high activity and stability for the oxygen reduction reaction. Journal of the American Chemical Society, 2010, 132(41): 14364–14366
CrossRef
Google scholar
|
[80] |
Feng Y G, Zhao Z L, Li F.
CrossRef
Google scholar
|
[81] |
Mahmood A, He D, Talib S H.
CrossRef
Google scholar
|
[82] |
Qin Y, Zhang W, Guo K.
CrossRef
Google scholar
|
[83] |
Guo S J, Wang L, Dong S J.
CrossRef
Google scholar
|
[84] |
Xing Y C, Cai Y, Vukmirovic M B.
CrossRef
Google scholar
|
[85] |
Javaheri M. Investigating the influence of Pd situation (as core or shell) in synthesized catalyst for ORR in PEMFC. International Journal of Hydrogen Energy, 2015, 40(20): 6661–6671
CrossRef
Google scholar
|
[86] |
Adzic R R, Zhang J, Sasaki K.
CrossRef
Google scholar
|
[87] |
Kong J, Qin Y H, Wang T L.
CrossRef
Google scholar
|
[88] |
Chong L, Wen J G, Kubal J.
CrossRef
Google scholar
|
[89] |
Jiao W, Chen C, You W.
CrossRef
Google scholar
|
[90] |
Lu Y, Zhang H, Wang Y.
CrossRef
Google scholar
|
[91] |
Tetteh E B, Gyan-Barimah C, Lee H Y.
CrossRef
Google scholar
|
[92] |
Cong Y, Wang H, Meng F.
CrossRef
Google scholar
|
[93] |
Su K, Zhang H, Qian S.
CrossRef
Google scholar
|
[94] |
Shi Y, Lee C, Tan X.
CrossRef
Google scholar
|
[95] |
Dai Y, Chen S. AuPt core-shell electrocatalysts for oxygen reduction reaction through combining the spontaneous Pt deposition and redox replacement of underpotential-deposited Cu. International Journal of Hydrogen Energy, 2016, 41(48): 22976–22982
CrossRef
Google scholar
|
[96] |
Lee C L, Huang K L, Tsai Y L.
CrossRef
Google scholar
|
[97] |
Wang C, An C, Qin C.
CrossRef
Google scholar
|
[98] |
Sasaki K, Naohara H, Choi Y.
CrossRef
Google scholar
|
[99] |
Alia S M, Yan Y S, Pivovar B S. Galvanic displacement as a route to highly active and durable extended surface electrocatalysts. Catalysis Science & Technology, 2014, 4(10): 3589–3600
CrossRef
Google scholar
|
[100] |
Zhu Y M, Peng J H, Zhu X R.
CrossRef
Google scholar
|
[101] |
Pang F, Yao C, Li A, et al. Research progress of PtNi alloy catalysts for oxygen reduction reaction. Material Report, 2023, 37(1): 20070194-9 (in Chinese)
|
[102] |
Li M, Hu Z, Li H.
CrossRef
Google scholar
|
[103] |
Hu X, Liu T, Zhang X.
CrossRef
Google scholar
|
[104] |
Lyu X, Zhang W, Liu S.
CrossRef
Google scholar
|
[105] |
Jeon T Y, Yu S H, Yoo S J.
CrossRef
Google scholar
|
[106] |
Liu D, Zhang Y, Liu H.
CrossRef
Google scholar
|
[107] |
Sethuraman V A, Vairavapandian D, Lafouresse M C.
CrossRef
Google scholar
|
[108] |
Chen H, Wang G, Gao T.
CrossRef
Google scholar
|
[109] |
Mondal S, Bagchi D, Riyaz M.
CrossRef
Google scholar
|
[110] |
Yan W, Cao S, Liu H.
CrossRef
Google scholar
|
[111] |
Sarkar S, Peter S C. An overview on Pt3X electrocatalysts for oxygen reduction reaction. Chemistry, an Asian Journal, 2021, 16(10): 1184–1197
CrossRef
Google scholar
|
[112] |
Xiao W, Lei W, Gong M.
CrossRef
Google scholar
|
[113] |
Gunji T, Tanaka S, Inagawa T.
CrossRef
Google scholar
|
[114] |
Ye X, Shao R Y, Yin P.
CrossRef
Google scholar
|
[115] |
Chung D Y, Jun S W, Yoon G.
CrossRef
Google scholar
|
[116] |
Kim H Y, Kim J Y, Joo S H. Pt-based intermetallic nanocatalysts for promoting the oxygen reduction reaction. Bulletin of the Korean Chemical Society, 2021, 42(5): 724–736
CrossRef
Google scholar
|
[117] |
Kim H Y, Joo S H. Recent advances in nanostructured intermetallic electrocatalysts for renewable energy conversion reactions. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2020, 8(17): 8195–8217
CrossRef
Google scholar
|
[118] |
Fracchia M, Ghigna P, Marelli M.
CrossRef
Google scholar
|
[119] |
Sarkar S, Varghese M, Vinod C P.
CrossRef
Google scholar
|
[120] |
Shao M, Odell J H, Peles A.
CrossRef
Google scholar
|
[121] |
Xia Z, Zhu R, Yu R.
CrossRef
Google scholar
|
[122] |
Luo M C, Qin Y N, Li M G.
CrossRef
Google scholar
|
[123] |
Dubau L, Nelayah J, Asset T.
CrossRef
Google scholar
|
[124] |
Gao P, Zhu Z, Ye X.
CrossRef
Google scholar
|
[125] |
Dubau L, Nelayah J, Moldovan S.
CrossRef
Google scholar
|
[126] |
Asset T, Chattot R, Drnec J.
CrossRef
Google scholar
|
[127] |
Zhu E B, Li Y J, Chiu C Y.
CrossRef
Google scholar
|
[128] |
Chattot R, Asset T, Bordet P.
CrossRef
Google scholar
|
[129] |
Bu L, Huang B, Zhu Y.
CrossRef
Google scholar
|
[130] |
Fan C, Huang Z, Hu X.
CrossRef
Google scholar
|
[131] |
Marković N M, Schmidt T J, Stamenkovic V.
CrossRef
Google scholar
|
[132] |
Sun L, Wang Q, Ma M.
CrossRef
Google scholar
|
[133] |
Luo M C, Sun Y J, Zhang X.
CrossRef
Google scholar
|
[134] |
Wang Y J, Zhao N, Fang B.
CrossRef
Google scholar
|
[135] |
Wang C, Daimon H, Onodera T.
CrossRef
Google scholar
|
[136] |
Zhang W, Li J, Wei Z. How size and strain effect synergistically improve electrocatalytic activity: A systematic investigation based on PtCoCu alloy nanocrystals. Small, 2023, 19(29): 2300112
CrossRef
Google scholar
|
[137] |
Shao M, Peles A, Shoemaker K. Electrocatalysis on platinum nanoparticles: Particle size effect on oxygen reduction reaction activity. Nano Letters, 2011, 11(9): 3714–3719
CrossRef
Google scholar
|
[138] |
Đukić T, Moriau L J, Pavko L.
CrossRef
Google scholar
|
[139] |
Zaman S, Huang L, Douka A I.
CrossRef
Google scholar
|
[140] |
Bu L Z, Ding J B, Guo S J.
CrossRef
Google scholar
|
[141] |
Li D G, Wang C, Strmcnik D S.
CrossRef
Google scholar
|
[142] |
An W, Liu P. Size and shape effects of Pd@Pt core-shell nanoparticles: Unique role of surface contraction and local structural flexibility. Journal of Physical Chemistry C, 2013, 117(31): 16144–16149
CrossRef
Google scholar
|
[143] |
Li L, Ye X T, Xiao Q.
CrossRef
Google scholar
|
[144] |
Li Y, Wang H H, Priest C.
CrossRef
Google scholar
|
[145] |
Zheng X Q, Li L, Li J.
CrossRef
Google scholar
|
/
〈 | 〉 |