Recent advances in morphology control of platinum catalysts toward oxygen reduction reaction
Received date: 28 Sep 2023
Accepted date: 14 Dec 2023
Published date: 15 Jun 2024
Copyright
Exploring advanced platinum (Pt)-based electrocatalysts is vital for the widespread implementation of proton exchange membrane fuel cells (PEMFCs). Morphology control represents an effective strategy to optimize the behavior of Pt catalysts. In this work, an attempt is made to comprehensively review the effect of morphology control on the catalytic behavior of catalysts in the oxygen reduction reaction (ORR). First, the fundamental physicochemical changes behind morphology control, including exposing more active sites, generating appropriate lattice strains, and forming different crystalline surfaces, are highlighted. Then, recently developed strategies for tuning the morphologies of electrocatalysts, including core-shell structures, hollow structures, nanocages, nanowires, and nanosheets, are comprehensively summarized. Finally, an outlook on the future development of morphology control of Pt catalysts is presented, including rational design strategies, advanced in situ characterization techniques, novel artificial intelligence, and mechanical learning. This work is intended to provide valuable insights into designing the morphology and technological innovation of efficient redox electrocatalysts in fuel cells.
Key words: morphology; platinum catalysts; electrocatalysis; ORR; PEMFC
Shun CHEN , Yanru LIU , Xiaogang FU , Wanglei WANG . Recent advances in morphology control of platinum catalysts toward oxygen reduction reaction[J]. Frontiers in Energy, 2024 , 18(3) : 330 -355 . DOI: 10.1007/s11708-024-0929-5
1 |
Chakraborty S, Dash S K, Elavarasan R M.
|
2 |
Manoharan Y, Hosseini S E, Butler B.
|
3 |
Habib M S, Arefin P. Adoption of hydrogen fuel cell vehicles and its prospects for the future (a review). Oriental Journal of Chemistry, 2022, 38(3): 621–631
|
4 |
GaoW, LeiY, ZhangX, et al. An overview of proton exchange membrane fuel cell. Chemical Industry and Engineering Progress, 2022, 41(3): 1539–1555 (in Chinese)
|
5 |
Sharaf O Z, Orhan M F. An overview of fuel cell technology: Fundamentals and applications. Renewable & Sustainable Energy Reviews, 2014, 32: 810–853
|
6 |
Yang X B, Wang Y Y, Tong X L.
|
7 |
Cao S, Sun T, Li J R.
|
8 |
Geng D, Huang Y C, Yuan S F.
|
9 |
Gao Y Y, Hou M, Qi M M.
|
10 |
Wang M, Zhang Z, Zhang S L.
|
11 |
Wang H, Gao J, Chen C.
|
12 |
Nørskov J K, Rossmeisl J, Logadottir A.
|
13 |
Feizabadi A, Chen J T, Banis M N.
|
14 |
Siburian R, Sebayang K, Supeno M.
|
15 |
Sugimoto R, Segawa Y, Suzuta A.
|
16 |
Mahata A, Nair A S, Pathak B. Recent advancements in Pt-nanostructure-based electrocatalysts for the oxygen reduction reaction. Catalysis Science & Technology, 2019, 9(18): 4835–4863
|
17 |
Asano M, Kawamura R, Sasakawa R.
|
18 |
Jia Q Y, Caldwell K, Strickland K.
|
19 |
Arán-Ais R M, Dionigi F, Merzdorf T.
|
20 |
Liang Z Z, Zheng H Q, Cao R. Importance of electrocatalyst morphology for the oxygen reduction reaction. ChemElectroChem, 2019, 6(10): 2600–2614
|
21 |
Sui S, Wang X Y, Zhou X T.
|
22 |
Xia Z H, Guo S J. Strain engineering of metal-based nanomaterials for energy electrocatalysis. Chemical Society Reviews, 2019, 48(12): 3265–3278
|
23 |
Greeley J, Mavrikakis M. Alloy catalysts designed from first principles. Nature Materials, 2004, 3(11): 810–815
|
24 |
Kandoi S, Greeley J, Sanchez-Castillo M A.
|
25 |
Wu J B, Yang H. Platinum-based oxygen reduction electrocatalysts. Accounts of Chemical Research, 2013, 46(8): 1848–1857
|
26 |
Kulkarni A, Siahrostami S, Patel A.
|
27 |
Nørskov J K, Bligaard T, Rossmeisl J.
|
28 |
Chang F F, Shan S Y, Petkov V.
|
29 |
NørskovJ K, StudtF, Abild-Pedersen F, et al. Fundamental Concepts in Heterogeneous Catalysis. New York: John Wiley & Sons, 2014
|
30 |
Kuroki H, Tamaki T, Matsumoto M.
|
31 |
Luo X S, Guo Y G, Zhou H R.
|
32 |
Rao C V, Cabrera C R, Ishikawa Y. In search of the active site in nitrogen-doped carbon nanotube electrodes for the oxygen reduction reaction. Journal of Physical Chemistry Letters, 2010, 1(18): 2622–2627
|
33 |
Tian X L, Zhao X, Su Y Q.
|
34 |
Kobayashi S, Wakisaka M, Tryk D A.
|
35 |
Luo M C, Sun Y J, Zhang X.
|
36 |
Rinaldo S G, Stumper J, Eikerling M. Physical theory of platinum nanoparticle dissolution in polymer electrolyte fuel cells. Journal of Physical Chemistry. C, 2010, 114(13): 5773–5785
|
37 |
Zaman S, Huang L, Douka A I.
|
38 |
Tian X L, Xu Y Y, Zhang W Y.
|
39 |
Koenigsmann C, Scofield M E, Liu H Q.
|
40 |
Lv H, Wang J, Yan Z.
|
41 |
Yang D J, Yan Z Y, Li B.
|
42 |
Serrà A, Vallés E. Advanced electrochemical synthesis of multicomponent metallic nanorods and nanowires: Fundamentals and applications. Applied Materials Today, 2018, 12: 207–234
|
43 |
Fu S F, Zhu C Z, Song J H.
|
44 |
Calle-Vallejo F, Pohl M D, Reinisch D.
|
45 |
Kabiraz M K, Ruqia B, Kim J.
|
46 |
Strasser P, Koh S, Anniyev T.
|
47 |
Fidiani E, Alkahfi A Z, Absor M A U.
|
48 |
Yao Z Y, Yuan Y L, Cheng T.
|
49 |
Zhang J W, Yuan Y L, Gao L.
|
50 |
Parthasarathy P, Virkar A V. Electrochemical Ostwald ripening of Pt and Ag catalysts supported on carbon. Journal of Power Sources, 2013, 234: 82–90
|
51 |
Cao F, Zhang H Y, Duan X.
|
52 |
Gao L, Li X X, Yao Z Y.
|
53 |
Cao J D, Cao H H, Wang F H.
|
54 |
Tetteh E B, Gyan-Barimah C, Lee H Y.
|
55 |
Oh S M, Patil S B, Jin X Y.
|
56 |
Zhang H. Ultrathin two-dimensional nanomaterials. ACS Nano, 2015, 9(10): 9451–9469
|
57 |
Chia X Y, Pumera M. Characteristics and performance of two-dimensional materials for electrocatalysis. Nature Catalysis, 2018, 1(12): 909–921
|
58 |
Chen Q Y, Chen Z Y, Ali A.
|
59 |
Lai J P, Guo S J. Design of ultrathin Pt-based multimetallic nanostructures for efficient oxygen reduction electrocatalysis. Small, 2017, 13(48): 1702156
|
60 |
Gong K P, Vukmirovic M B, Ma C.
|
61 |
Song L, Liang Z X, Nagamori K.
|
62 |
Zhang J, Mo Y, Vukmirovic M B.
|
63 |
Chen W L, Gao W P, Tu P.
|
64 |
Tran T N, Lee H Y, Park J D.
|
65 |
Braun T, Dinda S, Karkera G.
|
66 |
Weththasinha H, Yan Z X, Gao L N.
|
67 |
Chattot R, Le Bacq O, Beermann V.
|
68 |
Wei M, Huang L, Li L B.
|
69 |
Liu S, Wang Y, Liu L W.
|
70 |
Chaudhari N K, Joo J, Kim B.
|
71 |
Beermann V, Gocyla M, Kühl S.
|
72 |
Tian R X, Shen S Y, Zhu F J.
|
73 |
Gocyla M, Kuehl S, Shviro M.
|
74 |
Kühl S, Gocyla M, Heyen H.
|
75 |
Wang W C, Li X, He T O.
|
76 |
Qian J, Shen M, Zhou S.
|
77 |
Strickler A L, Jackson A, Jaramillo T F. Active and stable Ir@Pt core-shell catalysts for electrochemical oxygen reduction. ACS Energy Letters, 2017, 2(1): 244–249
|
78 |
Bian T, Zhang H, Jiang Y Y.
|
79 |
He T O, Wang W C, Yang X L.
|
80 |
Stamenkovic V R, Fowler B, Mun B S.
|
81 |
Cui C H, Gan L, Li H H.
|
82 |
Xie M H, Lyu Z H, Chen R H.
|
83 |
Niu G D, Zhou M, Yang X.
|
84 |
Zhang C L, Hwang S Y, Trout A.
|
85 |
Chong L, Wen J G, Kubal J.
|
86 |
Zhu Y M, Peng J H, Zhu X R.
|
87 |
Liao W, Zhou S Y, Wang Z C.
|
88 |
Zhu J W, Elnabawy A O, Lyu Z H.
|
89 |
Wang X, Choi S I, Roling L T.
|
90 |
Zhu J B, Xiao M L, Li K.
|
91 |
Ahn H, Ahn H, An J H.
|
92 |
Kitchin J R, Norskov J K, Barteau M A.
|
93 |
Weber P, Weber D J, Dosche C.
|
94 |
ZhengS, Yan X. Shape-controlled synthesis of platinum nanocatalysts for catalytic and electrocatalytic applications. Chemical Industry and Engineering Progress, 2011, 30(3): 513 (in Chinese)
|
95 |
Liu C, Ma Z, Cui M Y.
|
96 |
Yang W H, Zou L L, Huang Q H.
|
97 |
Bharadwaj N, Nair A S, Pathak B. Dimensional-dependent effects in platinum core-shell-based catalysts for fuel cell applications. ACS Applied Nano Materials, 2021, 4(9): 9697–9708
|
98 |
Sasaki K, Naohara H, Choi Y M.
|
99 |
Alinezhad A, Benedetti T M, Gloag L.
|
100 |
Pekkari A, Say Z, Susarrey-Arce A.
|
101 |
Hashiguchi Y, Watanabe F, Honma T.
|
102 |
Park J, Kwon T, Kim J.
|
103 |
Dubau L, Asset T, Chattot R.
|
104 |
Asset T, Job N, Busby Y.
|
105 |
van der Vliet D F, Wang C, Tripkovic D.
|
106 |
Asset T, Chattot R, Fontana M.
|
107 |
Dhavale V M, Kurungot S. Cu–Pt nanocage with 3-D electrocatalytic surface as an efficient oxygen reduction electrocatalyst for a primary Zn–air battery. ACS Catalysis, 2015, 5(3): 1445–1452
|
108 |
Eid K, Wang H J, Malgras V.
|
109 |
Eid K, Malgras V, He P.
|
110 |
Tuaev X, Rudi S, Petkov V.
|
111 |
Choi S I, Shao M H, Lu N.
|
112 |
Li M F, Zhao Z P, Cheng T.
|
113 |
Chen G R, Yang X T, Xie Z X.
|
114 |
Jiang Z, Liu Y, Huang L.
|
115 |
Chen S P, Li M F, Gao M Y.
|
116 |
Xiao W P, Lei W, Gong M X.
|
117 |
Kim H Y, Kwon T, Ha Y.
|
/
〈 | 〉 |