Recent advances in morphology control of platinum catalysts toward oxygen reduction reaction
Shun CHEN, Yanru LIU, Xiaogang FU, Wanglei WANG
Recent advances in morphology control of platinum catalysts toward oxygen reduction reaction
Exploring advanced platinum (Pt)-based electrocatalysts is vital for the widespread implementation of proton exchange membrane fuel cells (PEMFCs). Morphology control represents an effective strategy to optimize the behavior of Pt catalysts. In this work, an attempt is made to comprehensively review the effect of morphology control on the catalytic behavior of catalysts in the oxygen reduction reaction (ORR). First, the fundamental physicochemical changes behind morphology control, including exposing more active sites, generating appropriate lattice strains, and forming different crystalline surfaces, are highlighted. Then, recently developed strategies for tuning the morphologies of electrocatalysts, including core-shell structures, hollow structures, nanocages, nanowires, and nanosheets, are comprehensively summarized. Finally, an outlook on the future development of morphology control of Pt catalysts is presented, including rational design strategies, advanced in situ characterization techniques, novel artificial intelligence, and mechanical learning. This work is intended to provide valuable insights into designing the morphology and technological innovation of efficient redox electrocatalysts in fuel cells.
morphology / platinum catalysts / electrocatalysis / ORR / PEMFC
[1] |
Chakraborty S, Dash S K, Elavarasan R M.
CrossRef
Google scholar
|
[2] |
Manoharan Y, Hosseini S E, Butler B.
CrossRef
Google scholar
|
[3] |
Habib M S, Arefin P. Adoption of hydrogen fuel cell vehicles and its prospects for the future (a review). Oriental Journal of Chemistry, 2022, 38(3): 621–631
CrossRef
Google scholar
|
[4] |
GaoW, LeiY, ZhangX, et al. An overview of proton exchange membrane fuel cell. Chemical Industry and Engineering Progress, 2022, 41(3): 1539–1555 (in Chinese)
|
[5] |
Sharaf O Z, Orhan M F. An overview of fuel cell technology: Fundamentals and applications. Renewable & Sustainable Energy Reviews, 2014, 32: 810–853
CrossRef
Google scholar
|
[6] |
Yang X B, Wang Y Y, Tong X L.
CrossRef
Google scholar
|
[7] |
Cao S, Sun T, Li J R.
CrossRef
Google scholar
|
[8] |
Geng D, Huang Y C, Yuan S F.
CrossRef
Google scholar
|
[9] |
Gao Y Y, Hou M, Qi M M.
CrossRef
Google scholar
|
[10] |
Wang M, Zhang Z, Zhang S L.
CrossRef
Google scholar
|
[11] |
Wang H, Gao J, Chen C.
CrossRef
Google scholar
|
[12] |
Nørskov J K, Rossmeisl J, Logadottir A.
CrossRef
Google scholar
|
[13] |
Feizabadi A, Chen J T, Banis M N.
CrossRef
Google scholar
|
[14] |
Siburian R, Sebayang K, Supeno M.
CrossRef
Google scholar
|
[15] |
Sugimoto R, Segawa Y, Suzuta A.
CrossRef
Google scholar
|
[16] |
Mahata A, Nair A S, Pathak B. Recent advancements in Pt-nanostructure-based electrocatalysts for the oxygen reduction reaction. Catalysis Science & Technology, 2019, 9(18): 4835–4863
CrossRef
Google scholar
|
[17] |
Asano M, Kawamura R, Sasakawa R.
CrossRef
Google scholar
|
[18] |
Jia Q Y, Caldwell K, Strickland K.
CrossRef
Google scholar
|
[19] |
Arán-Ais R M, Dionigi F, Merzdorf T.
CrossRef
Google scholar
|
[20] |
Liang Z Z, Zheng H Q, Cao R. Importance of electrocatalyst morphology for the oxygen reduction reaction. ChemElectroChem, 2019, 6(10): 2600–2614
CrossRef
Google scholar
|
[21] |
Sui S, Wang X Y, Zhou X T.
CrossRef
Google scholar
|
[22] |
Xia Z H, Guo S J. Strain engineering of metal-based nanomaterials for energy electrocatalysis. Chemical Society Reviews, 2019, 48(12): 3265–3278
CrossRef
Google scholar
|
[23] |
Greeley J, Mavrikakis M. Alloy catalysts designed from first principles. Nature Materials, 2004, 3(11): 810–815
CrossRef
Google scholar
|
[24] |
Kandoi S, Greeley J, Sanchez-Castillo M A.
CrossRef
Google scholar
|
[25] |
Wu J B, Yang H. Platinum-based oxygen reduction electrocatalysts. Accounts of Chemical Research, 2013, 46(8): 1848–1857
CrossRef
Google scholar
|
[26] |
Kulkarni A, Siahrostami S, Patel A.
CrossRef
Google scholar
|
[27] |
Nørskov J K, Bligaard T, Rossmeisl J.
CrossRef
Google scholar
|
[28] |
Chang F F, Shan S Y, Petkov V.
CrossRef
Google scholar
|
[29] |
NørskovJ K, StudtF, Abild-Pedersen F, et al. Fundamental Concepts in Heterogeneous Catalysis. New York: John Wiley & Sons, 2014
|
[30] |
Kuroki H, Tamaki T, Matsumoto M.
CrossRef
Google scholar
|
[31] |
Luo X S, Guo Y G, Zhou H R.
CrossRef
Google scholar
|
[32] |
Rao C V, Cabrera C R, Ishikawa Y. In search of the active site in nitrogen-doped carbon nanotube electrodes for the oxygen reduction reaction. Journal of Physical Chemistry Letters, 2010, 1(18): 2622–2627
CrossRef
Google scholar
|
[33] |
Tian X L, Zhao X, Su Y Q.
CrossRef
Google scholar
|
[34] |
Kobayashi S, Wakisaka M, Tryk D A.
CrossRef
Google scholar
|
[35] |
Luo M C, Sun Y J, Zhang X.
CrossRef
Google scholar
|
[36] |
Rinaldo S G, Stumper J, Eikerling M. Physical theory of platinum nanoparticle dissolution in polymer electrolyte fuel cells. Journal of Physical Chemistry. C, 2010, 114(13): 5773–5785
CrossRef
Google scholar
|
[37] |
Zaman S, Huang L, Douka A I.
CrossRef
Google scholar
|
[38] |
Tian X L, Xu Y Y, Zhang W Y.
CrossRef
Google scholar
|
[39] |
Koenigsmann C, Scofield M E, Liu H Q.
CrossRef
Google scholar
|
[40] |
Lv H, Wang J, Yan Z.
CrossRef
Google scholar
|
[41] |
Yang D J, Yan Z Y, Li B.
CrossRef
Google scholar
|
[42] |
Serrà A, Vallés E. Advanced electrochemical synthesis of multicomponent metallic nanorods and nanowires: Fundamentals and applications. Applied Materials Today, 2018, 12: 207–234
CrossRef
Google scholar
|
[43] |
Fu S F, Zhu C Z, Song J H.
CrossRef
Google scholar
|
[44] |
Calle-Vallejo F, Pohl M D, Reinisch D.
CrossRef
Google scholar
|
[45] |
Kabiraz M K, Ruqia B, Kim J.
CrossRef
Google scholar
|
[46] |
Strasser P, Koh S, Anniyev T.
CrossRef
Google scholar
|
[47] |
Fidiani E, Alkahfi A Z, Absor M A U.
CrossRef
Google scholar
|
[48] |
Yao Z Y, Yuan Y L, Cheng T.
CrossRef
Google scholar
|
[49] |
Zhang J W, Yuan Y L, Gao L.
CrossRef
Google scholar
|
[50] |
Parthasarathy P, Virkar A V. Electrochemical Ostwald ripening of Pt and Ag catalysts supported on carbon. Journal of Power Sources, 2013, 234: 82–90
CrossRef
Google scholar
|
[51] |
Cao F, Zhang H Y, Duan X.
CrossRef
Google scholar
|
[52] |
Gao L, Li X X, Yao Z Y.
CrossRef
Google scholar
|
[53] |
Cao J D, Cao H H, Wang F H.
CrossRef
Google scholar
|
[54] |
Tetteh E B, Gyan-Barimah C, Lee H Y.
CrossRef
Google scholar
|
[55] |
Oh S M, Patil S B, Jin X Y.
CrossRef
Google scholar
|
[56] |
Zhang H. Ultrathin two-dimensional nanomaterials. ACS Nano, 2015, 9(10): 9451–9469
CrossRef
Google scholar
|
[57] |
Chia X Y, Pumera M. Characteristics and performance of two-dimensional materials for electrocatalysis. Nature Catalysis, 2018, 1(12): 909–921
CrossRef
Google scholar
|
[58] |
Chen Q Y, Chen Z Y, Ali A.
CrossRef
Google scholar
|
[59] |
Lai J P, Guo S J. Design of ultrathin Pt-based multimetallic nanostructures for efficient oxygen reduction electrocatalysis. Small, 2017, 13(48): 1702156
CrossRef
Google scholar
|
[60] |
Gong K P, Vukmirovic M B, Ma C.
CrossRef
Google scholar
|
[61] |
Song L, Liang Z X, Nagamori K.
CrossRef
Google scholar
|
[62] |
Zhang J, Mo Y, Vukmirovic M B.
CrossRef
Google scholar
|
[63] |
Chen W L, Gao W P, Tu P.
CrossRef
Google scholar
|
[64] |
Tran T N, Lee H Y, Park J D.
CrossRef
Google scholar
|
[65] |
Braun T, Dinda S, Karkera G.
CrossRef
Google scholar
|
[66] |
Weththasinha H, Yan Z X, Gao L N.
CrossRef
Google scholar
|
[67] |
Chattot R, Le Bacq O, Beermann V.
CrossRef
Google scholar
|
[68] |
Wei M, Huang L, Li L B.
CrossRef
Google scholar
|
[69] |
Liu S, Wang Y, Liu L W.
CrossRef
Google scholar
|
[70] |
Chaudhari N K, Joo J, Kim B.
CrossRef
Google scholar
|
[71] |
Beermann V, Gocyla M, Kühl S.
CrossRef
Google scholar
|
[72] |
Tian R X, Shen S Y, Zhu F J.
CrossRef
Google scholar
|
[73] |
Gocyla M, Kuehl S, Shviro M.
CrossRef
Google scholar
|
[74] |
Kühl S, Gocyla M, Heyen H.
CrossRef
Google scholar
|
[75] |
Wang W C, Li X, He T O.
CrossRef
Google scholar
|
[76] |
Qian J, Shen M, Zhou S.
CrossRef
Google scholar
|
[77] |
Strickler A L, Jackson A, Jaramillo T F. Active and stable Ir@Pt core-shell catalysts for electrochemical oxygen reduction. ACS Energy Letters, 2017, 2(1): 244–249
CrossRef
Google scholar
|
[78] |
Bian T, Zhang H, Jiang Y Y.
CrossRef
Google scholar
|
[79] |
He T O, Wang W C, Yang X L.
CrossRef
Google scholar
|
[80] |
Stamenkovic V R, Fowler B, Mun B S.
CrossRef
Google scholar
|
[81] |
Cui C H, Gan L, Li H H.
CrossRef
Google scholar
|
[82] |
Xie M H, Lyu Z H, Chen R H.
CrossRef
Google scholar
|
[83] |
Niu G D, Zhou M, Yang X.
CrossRef
Google scholar
|
[84] |
Zhang C L, Hwang S Y, Trout A.
CrossRef
Google scholar
|
[85] |
Chong L, Wen J G, Kubal J.
CrossRef
Google scholar
|
[86] |
Zhu Y M, Peng J H, Zhu X R.
CrossRef
Google scholar
|
[87] |
Liao W, Zhou S Y, Wang Z C.
CrossRef
Google scholar
|
[88] |
Zhu J W, Elnabawy A O, Lyu Z H.
CrossRef
Google scholar
|
[89] |
Wang X, Choi S I, Roling L T.
CrossRef
Google scholar
|
[90] |
Zhu J B, Xiao M L, Li K.
CrossRef
Google scholar
|
[91] |
Ahn H, Ahn H, An J H.
CrossRef
Google scholar
|
[92] |
Kitchin J R, Norskov J K, Barteau M A.
CrossRef
Google scholar
|
[93] |
Weber P, Weber D J, Dosche C.
CrossRef
Google scholar
|
[94] |
ZhengS, Yan X. Shape-controlled synthesis of platinum nanocatalysts for catalytic and electrocatalytic applications. Chemical Industry and Engineering Progress, 2011, 30(3): 513 (in Chinese)
|
[95] |
Liu C, Ma Z, Cui M Y.
CrossRef
Google scholar
|
[96] |
Yang W H, Zou L L, Huang Q H.
CrossRef
Google scholar
|
[97] |
Bharadwaj N, Nair A S, Pathak B. Dimensional-dependent effects in platinum core-shell-based catalysts for fuel cell applications. ACS Applied Nano Materials, 2021, 4(9): 9697–9708
CrossRef
Google scholar
|
[98] |
Sasaki K, Naohara H, Choi Y M.
CrossRef
Google scholar
|
[99] |
Alinezhad A, Benedetti T M, Gloag L.
CrossRef
Google scholar
|
[100] |
Pekkari A, Say Z, Susarrey-Arce A.
CrossRef
Google scholar
|
[101] |
Hashiguchi Y, Watanabe F, Honma T.
CrossRef
Google scholar
|
[102] |
Park J, Kwon T, Kim J.
CrossRef
Google scholar
|
[103] |
Dubau L, Asset T, Chattot R.
CrossRef
Google scholar
|
[104] |
Asset T, Job N, Busby Y.
CrossRef
Google scholar
|
[105] |
van der Vliet D F, Wang C, Tripkovic D.
CrossRef
Google scholar
|
[106] |
Asset T, Chattot R, Fontana M.
CrossRef
Google scholar
|
[107] |
Dhavale V M, Kurungot S. Cu–Pt nanocage with 3-D electrocatalytic surface as an efficient oxygen reduction electrocatalyst for a primary Zn–air battery. ACS Catalysis, 2015, 5(3): 1445–1452
CrossRef
Google scholar
|
[108] |
Eid K, Wang H J, Malgras V.
CrossRef
Google scholar
|
[109] |
Eid K, Malgras V, He P.
CrossRef
Google scholar
|
[110] |
Tuaev X, Rudi S, Petkov V.
CrossRef
Google scholar
|
[111] |
Choi S I, Shao M H, Lu N.
CrossRef
Google scholar
|
[112] |
Li M F, Zhao Z P, Cheng T.
CrossRef
Google scholar
|
[113] |
Chen G R, Yang X T, Xie Z X.
CrossRef
Google scholar
|
[114] |
Jiang Z, Liu Y, Huang L.
CrossRef
Google scholar
|
[115] |
Chen S P, Li M F, Gao M Y.
CrossRef
Google scholar
|
[116] |
Xiao W P, Lei W, Gong M X.
CrossRef
Google scholar
|
[117] |
Kim H Y, Kwon T, Ha Y.
CrossRef
Google scholar
|
/
〈 | 〉 |