Recent advances in co-processing biomass feedstock with petroleum feedstock: A review
Received date: 25 Aug 2023
Accepted date: 03 Nov 2023
Copyright
Co-processing of biomass feedstock with petroleum feedstock in existing refineries is a promising technology that enables the production of low-carbon fuels, reduces dependence on petroleum feedstock, and utilizes the existing infrastructure in refinery. Much effort has been dedicated to advancing co-processing technologies. Though significant progress has been made, the development of co-processing is still hindered by numerous challenges. Therefore, it is important to systematically summarize up-to-date research activities on co-processing process for the further development of co-processing technologies. This paper provides a review of the latest research activities on co-processing biomass feedstock with petroleum feedstock utilizing fluid catalytic cracking (FCC) or hydrotreating (HDT) processes. In addition, it extensively discusses the influence of different types and diverse physicochemical properties of biomass feedstock on the processing of petroleum feedstock, catalysts employed in co-processing studies, and relevant projects. Moreover, it summarizes and discusses co-processing projects in pilot or larger scale. Furthermore, it briefly prospects the research trend of co-processing in the end.
Key words: co-processing; biomass; bio-oil; petroleum feedstock; fluid catalytic cracking; hydrotreating
Cong Wang , Tan Li , Wenhao Xu , Shurong Wang , Kaige Wang . Recent advances in co-processing biomass feedstock with petroleum feedstock: A review[J]. Frontiers in Energy, . DOI: 10.1007/s11708-024-0920-1
AAEM | Alkali and alkaline earth metal |
CAPEX | Capital expenditure |
CFP | Catalytic fast pyrolysis |
CTO | Catalyst-to-oil |
DDO | Direct deoxygenation |
DDS | Direct desulfurization |
DEDAD | N,N-diethyldodecanamide |
DN | Denitrogenation |
DO | Deoxygenation |
FCC | Fluid catalytic cracking |
FP | Fast pyrolysis |
HDM | Hydrodemetallization |
HDN | Hydrodenitrogenation |
HDO | Hydrodeoxygenation |
HDS | Hydrodesulfurization |
HDT | Hydrotreating |
HHV | Higher heating value |
HTL | Hydrothermal liquefaction |
HVGO | Heavy vacuum gas oil |
HYD | Hydrogenation |
LCO | Light cycle oil |
MAT | Micro-activity testing |
Ni | Nickel |
OPEX | Operating expense |
PAH | Polycyclic aromatic hydrocarbon |
SRGO | Straight run gas oil |
TAN | Total acid number |
V | Vanadium |
VGO | Vacuum gas oil |
WCO | Waste cooking oil |
1 |
Sousa-AguiarE FXimenesV LAlmeidaJ M A R D,
|
2 |
Guilhot L . An analysis of China’s energy policy from 1981 to 2020: Transitioning towards to a diversified and low-carbon energy system. Energy Policy, 2022, 162: 112806
|
3 |
Olabi A , Abdelkareem M A . Renewable energy and climate change. Renewable & Sustainable Energy Reviews, 2022, 158: 112111
|
4 |
Liu Y , Yang X , Zhang J .
|
5 |
van Dyk S , Su J , Mcmillan J D .
|
6 |
Jeswani H K , Chilvers A , Azapagic A . Environmental sustainability of biofuels: A review. Proceedings of the Royal Society of London. Series A, 2020, 476(2243): 20200351
|
7 |
WoodwardS. Biofuels: A Solution for Climate Change. National Renewable Energy Laboratory, Golden, CO, US, 1999
|
8 |
Paratzos S, Mcmillan J D, Saddler J N. The Potential and Challenges of Drop-in Biofuels. IEA Bioenergy Task 39 Report, 2014
|
9 |
Yazdanparast R , Jolai F , Pishvaee M .
|
10 |
van Dyk S, Su J, McMillan J D, et al. Drop-in Biofuels: The Key Role that Co-processing Will Play in Its Production. IEA Bioenergy Task 39 Report, 2019
|
11 |
Moon M , Park W K , Lee S Y .
|
12 |
DasP. Pyrolytic bio-oil—Production and applications. In: Tuli D, Kasture S, Kuila A, eds. Advanced Biofuel Technologies. Elsevier, 2022, 243–304
|
13 |
Bezergianni S , Dimitriadis A , Kikhtyanin O .
|
14 |
Bhatt A H , Zhang Y , Heath G . Bio-oil co-processing can substantially contribute to renewable fuel production potential and meet air quality standards. Applied Energy, 2020, 268: 114937
|
15 |
Shahriar M F , Khanal A . The current techno-economic, environmental, policy status and perspectives of sustainable aviation fuel (SAF). Fuel, 2022, 325: 124905
|
16 |
TalmadgeMJiangY JAskanderJ,
|
17 |
Han X , Wang H , Zeng Y .
|
18 |
Andrade M C , Gorgulho Silva C D O , De Souza Moreira L R .
|
19 |
Karatzos S , Van Dyk J S , Mcmillan J D .
|
20 |
van Dyk S , Su J , Ebadian M .
|
21 |
Saravanan A , Senthil Kumar P S , Jeevanantham S .
|
22 |
Rodionova M V , Bozieva A M , Zharmukhamedov S K .
|
23 |
Jena U , Das K . Comparative evaluation of thermochemical liquefaction and pyrolysis for bio-oil production from microalgae. Energy & Fuels, 2011, 25(11): 5472–5482
|
24 |
Seo M W , Lee S H , Nam H .
|
25 |
StöckerM. Perspectives for thermochemical conversions of lignocellulosic biomass. Small, 2023, early access, doi:10.1002/smll.202302495
|
26 |
ChenGZhangRMaW,
|
27 |
Liao H T , Ye X N , Lu Q .
|
28 |
Lahijani P , Mohammadi M , Mohamed A R .
|
29 |
Zhang M , Hu Y , Wang H .
|
30 |
Stefanidis S D , Kalogiannis K G , Lappas A A . Co-processing bio-oil in the refinery for drop-in biofuels via fluid catalytic cracking. Wiley Interdisciplinary Reviews. Energy and Environment, 2018, 7(3): e281
|
31 |
SpeightJ G. Handbook of Petroleum Refining. Boca Raton: CRC Press, 2016
|
32 |
Zhang R , You Z , Ji J .
|
33 |
Jacobson K , Maheria K C , Kumar Dalai A K . Bio-oil valorization: A review. Renewable & Sustainable Energy Reviews, 2013, 23: 91–106
|
34 |
Liu D , Li Z , Wu C .
|
35 |
Wu N , Niu Q , Pieters J .
|
36 |
Kumar S , Chandra Srivastava V C , Nanoti S M .
|
37 |
Mikulec J , Kleinová A , Cvengroš J .
|
38 |
Sano Y , Choi K H , Korai Y .
|
39 |
Bielansky P , Weinert A , Schönberger C .
|
40 |
Pinho A , de Almeida M B , Mendes F L .
|
41 |
Naik D V , Kumar V , Prasad B .
|
42 |
Lindfors C , Paasikallio V , Kuoppala E .
|
43 |
de Paz Carmona H , Vráblík A , Hidalgo Herrador J M .
|
44 |
Shi Z , Zhao B , Tang S .
|
45 |
Udayan A , Pandey A K , Sirohi R .
|
46 |
Awogbemi O , Onuh E I , Inambao F L . Comparative study of properties and fatty acid composition of some neat vegetable oils and waste cooking oils. International Journal of Low Carbon Technologies, 2019, 14(3): 417–425
|
47 |
Aniza R , Chen W H , Lin Y Y .
|
48 |
De Paz Carmona H , Horáček J , Tišler Z .
|
49 |
de Paz Carmona H , de la Torre Alfaro O , Brito Alayon A .
|
50 |
Hidalgo J M , Horaček J , Matoušek L .
|
51 |
RashidUHazmiB. Advances in production of biodiesel from vegetable oils and animal fats. In: Lalthazuala Rokhum S, Halder G, Assabumrungrat S, eds. Biodiesel Production: Feedstocks, Catalysts, and Technologies. John Wiley & Sons Ltd., 2022
|
52 |
Andari F , Kittel J , Fernandes J .
|
53 |
ZhangFYiJPanW,
|
54 |
Tian C , Li B , Liu Z .
|
55 |
Cerqueira H , Caeiro G , Costa L .
|
56 |
Sharma N , Jaiswal K K , Kumar V .
|
57 |
Zou S , Wu Y , Yang g M .
|
58 |
Xiu S , Shahbazi A . Bio-oil production and upgrading research: A review. Renewable & Sustainable Energy Reviews, 2012, 16(7): 4406–4414
|
59 |
ChengFBrewerC E. Best practices for bio-crude oil production at pilot scale using continuous flow reactors. In: Jacob-Lopes E, Aguiar Severo I, Queiroz Zepka L, eds. 3rd Generation Biofuels. Elsevier, 2022, 1061–119
|
60 |
Park H , Cruz D , Tiller P .
|
61 |
Zhang Q , Chang J , Wang T .
|
62 |
Chang S H . Bio-oil derived from palm empty fruit bunches: Fast pyrolysis, liquefaction and future prospects. Biomass and Bioenergy, 2018, 119: 263–276
|
63 |
Lange J P . Renewable feedstocks: The problem of catalyst deactivation and its mitigation. Angewandte Chemie International Edition, 2015, 54(45): 13186–13197
|
64 |
Dabros T M , Stummann M Z , Høj M .
|
65 |
Alvarez-Chavez B J , Godbout S , Palacios-Rios J H .
|
66 |
Zhang L , Liu R , Yin R .
|
67 |
Pietraccini M , Badu P , Tait T .
|
68 |
Sekar M , Mathimani T , Alagumalai A .
|
69 |
Attia M , Farag S , Chaouki J . Upgrading of oils from biomass and waste: Catalytic hydrodeoxygenation. Catalysts, 2020, 10(12): 1381
|
70 |
Zacher A H , Olarte M V , Santosa D M .
|
71 |
Zhang L , Gong K , Lai J .
|
72 |
Stummann M , Høj M , Schandel C B .
|
73 |
Zhang X , Wang T , Ma L .
|
74 |
Mortensen P M , Grunwaldt J D , Jensen P A .
|
75 |
Ali H, Kansal S K, Saravanamurugan S. Upgradation of bio-oil derived from various biomass feedstocks via hydrodeoxygenation. In: Li H, Saravanamurugan S, Pandey A, eds. Biomass, Biofuels, Biochemicals. Elsevier, 2022, 287−308
|
76 |
Zhang C , Zhang Z C . Essential quality attributes of tangible bio-oils from catalytic pyrolysis of lignocellulosic biomass. Chemical Record, 2019, 19(9): 2044–2057
|
77 |
Eschenbacher A , Myrstad T , Bech N .
|
78 |
Chen X , Chen Y , Yang H .
|
79 |
Zhang C , Zhang Z C . Essential quality attributes of tangible bio-oils from catalytic pyrolysis of lignocellulosic biomass. Chemical Record, 2019, 19(9): 2044–2057
|
80 |
Santosa D M , Kutnyakov I , Flake M .
|
81 |
Dabros T M H , Stummann M Z , Høj M .
|
82 |
de Mello L F , Gobbo R , Moure G T .
|
83 |
SpeightJ G. The Refinery of the Future. Massachusetts: Gulf Professional Publishing, 2020
|
84 |
Jones D S. Pujadó P P. Handbook of Petroleum Processing. Dordrecht: Springer Science & Business Media, 2006
|
85 |
SadeghbeigiR. Fluid Catalytic Cracking Handbook: An Expert Guide to the Practical Operation, Design, and Optimization of FCC Units. Oxford: Butterworth-Heinemann, 2020
|
86 |
Huynh T M , Armbruster U , Atia H .
|
87 |
Thegarid N , Fogassy G , Schuurman Y .
|
88 |
Seiser R , Olstad J L , Magrini K A .
|
89 |
Corma A , Huber G W , Sauvanaud L .
|
90 |
Huber G W , Chheda J N , Barrett C J .
|
91 |
Ragauskas A J , Williams C K , Davison B H .
|
92 |
de Rezende Pinho A , De Almeida M B B , Mendes F L .
|
93 |
BrydenKWeatherbeeGHabibE T Jr. FCC pilot plant results with vegetable oil and pyrolysis oil feeds. In: Biomass 2013, Washington, DC. Washington, DC: U.S. Department of Energy, 2013, 1--17
|
94 |
Su J , Cao L , Lee G .
|
95 |
Bielansky P , Reichhold A , Schönberger C . Catalytic cracking of rapeseed oil to high octane gasoline and olefins. Chemical Engineering and Processing, 2010, 49(8): 873–880
|
96 |
Dupain X , Costa D J , Schaverien C J .
|
97 |
Yarlagadda P S , Hu Y , Bakhshi N N . Effect of hydrothermal treatment of HZSM-5 catalyst on its performance for the conversion of canola and mustard oils to hydrocarbons. Industrial & Engineering Chemistry Product Research and Development, 1986, 25(2): 251–257
|
98 |
Melero J A , Clavero M M , Calleja G .
|
99 |
Santillan-Jimenez E , Pace R , Morgan T .
|
100 |
Melin K , Strüven J O , Eidam P .
|
101 |
Zhang Y , Alvarez-Majmutov A . Production of renewable liquid fuels by coprocessing HTL biocrude using hydrotreating and fluid catalytic cracking. Energy & Fuels, 2021, 35(23): 19535–19542
|
102 |
BrydenKWeatherbeeGHabibE T. Flexible pilot plant technology for evaluation of unconventional feedstocks and processes. 2023–11-29, available at website of Grace
|
103 |
ZacherA. Optimizing Co-processing of Bio-oil in Refinery Unit Operations Using a Davison Circulating Riser (DCR). Pacific Northwest National Laboratory Report. 2015
|
104 |
Vogt E T , Weckhuysen B M . Fluid catalytic cracking: Recent developments on the grand old lady of zeolite catalysis. Chemical Society Reviews, 2015, 44(20): 7342–7370
|
105 |
Pinho A , de Almeida M B , Mendes F L .
|
106 |
Lindfors C , Elliott D C , Prins W .
|
107 |
Chen X , Che Q , Li S .
|
108 |
Iisa K , French R J , Orton K A .
|
109 |
Tran Q K , Le M L , Ly H V .
|
110 |
Dayton D C , Hlebak J , Carpenter J R .
|
111 |
Wang K , Dayton D C , Peters J E .
|
112 |
Arbogast S, Bellman D, Paynter D, et al. Commercialization of pyrolysis oil in existing refineries—Part 1. 2017-1-11, available at website of Hydrocarbon Processing
|
113 |
Samolada M , Baldauf W , Vasalos I . Production of a bio-gasoline by upgrading biomass flash pyrolysis liquids via hydrogen processing and catalytic cracking. Fuel, 1998, 77(14): 1667–1675
|
114 |
Gueudré L , Chapon F , Mirodatos C .
|
115 |
Lutz H , Büchele M , Knaus F .
|
116 |
de Miguel Mercader F , Groeneveld M , Kersten S .
|
117 |
de Miguel Mercader F , Groeneveld M , Kersten S R A .
|
118 |
Baldauf W , Balfanz U , Rupp M . Upgrading of flash pyrolysis oil and utilization in refineries. Biomass and Bioenergy, 1994, 7(1–6): 237–244
|
119 |
Fogassy G , Thegarid N , Toussaint G .
|
120 |
Adjaye J D , Bakhshi N N . Production of hydrocarbons by catalytic upgrading of a fast pyrolysis bio-oil. Part I: Conversion over various catalysts. Fuel Processing Technology, 1995, 45(3): 161–183
|
121 |
Lappas A , Bezergianni S , Vasalos I . Production of biofuels via co-processing in conventional refining processes. Catalysis Today, 2009, 145(1–2): 55–62
|
122 |
Wang C , Li M , Fang Y . Coprocessing of catalytic-pyrolysis-derived bio-oil with VGO in a pilot-scale FCC riser. Industrial & Engineering Chemistry Research, 2016, 55(12): 3525–3534
|
123 |
Agblevor F A , Mante O , McClung R .
|
124 |
Talmadge M S , Baldwin R M , Biddy M J .
|
125 |
YangW C. Handbook of Fluidization and Fluid-particle Systems. New York: CRC Press, 2003
|
126 |
Komvokis V, Tan L X L, Clough M, et al. Zeolites in fluid catalytic cracking (FCC). In: Xiao F, Meng X, eds. Zeolites in Sustainable Chemistry: Synthesis, Characterization and Catalytic Applications. Springer, 2016, 271–297
|
127 |
Schuurman Y, Fogassy G, Mirodatos C. Tomorrow’s biofuels: Hybrid biogasoline by co-processing in FCC units. In: Triantafyllidis K S, Lappas A A, Stöcker M, eds. The Role of Catalysis for the Sustainable Production of Bio-fuels and Bio-chemicals. Elsevier, 2013, 321–349
|
128 |
Ma Z , Wei L , Zhou W .
|
129 |
CormaAOrchillésA V. Current views on the mechanism of catalytic cracking. Microporous and Mesoporous Materials, 2000, 35–36: 21–30
|
130 |
Vermeiren W , Gilson J P . Impact of zeolites on the petroleum and petrochemical industry. Topics in Catalysis, 2009, 52(9): 1131–1161
|
131 |
Jae J , Tompsett G A , Lin Y C .
|
132 |
Ferella F , D’Adamo I , Leone S .
|
133 |
Ferreira J M M , Sousa-Aguiar E F , Aranda D A G . FCC catalyst accessibility—A review. Catalysts, 2023, 13(4): 784
|
134 |
Ihli J , Jacob R R , Holler M .
|
135 |
Fogassy G , Thegarid N , Schuurman Y .
|
136 |
Huuska M , Rintala J . Effect of catalyst acidity on the hydrogenolysis of anisole. Journal of Catalysis, 1985, 94(1): 230–238
|
137 |
Fogassy G , Thegarid N , Schuurman Y .
|
138 |
Graça I , Comparot J D , Laforge S .
|
139 |
Graça I , Ribeiro F R , Cerqueira H .
|
140 |
Gerards R , Fernandes A , Graça I .
|
141 |
Akah A . Application of rare earths in fluid catalytic cracking: A review. Journal of Rare Earths, 2017, 35(10): 941–956
|
142 |
Clough M , Pope J C , Lin L T X .
|
143 |
Zacher A H , Olarte M V , Santosa D M .
|
144 |
Elliott D C . Water, alkali and char in flash pyrolysis oils. Biomass and Bioenergy, 1994, 7(1–6): 179–185
|
145 |
Javaid A , Ryan T , Berg G .
|
146 |
Hoekstra E , Hogendoorn K J , Wang X .
|
147 |
Zhong D , Chang Z , Zeng K .
|
148 |
Baldwin R M , Feik C J . Bio-oil stabilization and upgrading by hot gas filtration. Energy & Fuels, 2013, 27(6): 3224–3238
|
149 |
Su J , Van Dyk S , Saddler J . Repurposing oil refineries to “stand-alone units” that refine lipids/oleochemicals to produce low-carbon intensive, drop-in biofuels. Journal of Cleaner Production, 2022, 376: 134335
|
150 |
Chen S . Green oil production by hydroprocessing. International Journal of Clean Coal Energy, 2012, 1(4): 43–55
|
151 |
Xu J , Brodu N , Abdelouahed L .
|
152 |
Tóth C , Sági D , Hancsók J . Diesel fuel production by catalytic hydrogenation of light cycle oil and waste cooking oil containing gas oil. Topics in Catalysis, 2015, 58(14–17): 948–960
|
153 |
Bezergianni S , Dimitriadis A , Karonis D . Diesel decarbonization via effective catalytic co-hydroprocessing of residual lipids with gas–oil. Fuel, 2014, 136: 366–373
|
154 |
Kubička D, Tukač V. Hydrotreating of triglyceride-based feedstocks in refineries. In: Murzin D Y, ed. Advances in Chemical Engineering. Elsevier, 2013, 141–194
|
155 |
Sánchez O J , Cardona C A . Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresource Technology, 2008, 99(13): 5270–5295
|
156 |
Wang J , Singer S D , Souto B A .
|
157 |
Guilhaume N , Schuurman Y , Geantet C . The role of catalysis in the valorization of woody biomass fast pyrolysis liquids: Overview and contribution of IRCELYON. Catalysis Today, 2021, 373: 5–23
|
158 |
Chen S Y , Nishi M , Mochizuki T .
|
159 |
de Santos Brandão J G, Manmohandas H V. A simplified kinetic model for continuous hydrotreating of HTL biocrude. Thesis for the Master’s Degree. Aalborg: Aalborg University, 2020 (in Denmark)
|
160 |
Bui V N , Toussaint G , Laurenti D .
|
161 |
Pinheiro A , Hudebine D , Dupassieux N .
|
162 |
Zhu C , Gutiérrez O Y , Santosa D M .
|
163 |
Sauvanaud L , Mathieu Y , Corma A .
|
164 |
Baker E G, Elliott D C. Catalytic hydrotreating of biomass-derived oils. In: Soltes Ed J, Milne T A, eds. Pyrolysis Oils from Biomass. ACS Publications. 1988
|
165 |
Xing T , Alvarez-Majmutov A , Gieleciak R .
|
166 |
Badoga S , Alvarez-Majmutov A , Chen J . Mild hydrotreatment of biocrude derived from hydrothermal liquefaction of agriculture waste: Improving biocrude miscibility with vacuum gas oil to aid co-processing. Biofuels, Bioproducts & Biorefining, 2022, 16(3): 785–798
|
167 |
Pinheiro A , Hudebine D , Dupassieux N .
|
168 |
Chen W , Cao J , Fu W .
|
169 |
Pinheiro A , Dupassieux N , Hudebine D .
|
170 |
PhilippeMRichardFHudebineD,
|
171 |
Bezergianni S , Dagonikou V . Effect of CO2 on catalytic hydrotreatment of gas−oil. Canadian Journal of Chemical Engineering, 2015, 93(6): 1017–1023
|
172 |
Dimitriadis A , Meletidis G , Pfisterer U .
|
173 |
Borugadda V B , Chand R , Dalai A K . Screening suitable refinery distillates for blending with HTL bio-crude and evaluating the co-processing potential at petroleum refineries. Energy Conversion and Management, 2020, 222: 113186
|
174 |
Sánchez-Anaya O , Mederos-Nieto F S , Elizalde I .
|
175 |
Sági D , Baladincz P , Varga Z .
|
176 |
Mortensen P M , Grunwaldt J D , Jensen P A .
|
177 |
Nunes V O , Fraga A C , Silva R V S .
|
178 |
Li T , Su J , Wang H .
|
179 |
Egeberg R , Knudsen K , Nyström S .
|
180 |
de Paz Carmona H , Svobodova E , Tišler Z K .
|
181 |
Pan L , Liu P , Li Z . A discussion on China’s vehicle fuel policy: Based on the development route optimization of refining industry. Energy Policy, 2018, 114: 403–412
|
182 |
Williams M, Minjares R. A Technical Summary of Euro 6/VI Vehicle Emission Standards. The International Council on Clean Transportation (ICCT) Report, 2016
|
183 |
Wu Y , Peng L , Qin L .
|
/
〈 | 〉 |